-The execution times of NAS benchmarks over the one site multicores scenario
-is higher than the execution time of those running over one site multicores scenario.
-This because in the one site multicores scenario the communication is increased significantly,
-and all node's cores share the same node network link which increased
-the communication times. While, the execution times of the NAS benchmarks over
-the two site multicores scenario is less than those executed over the two
-sites one core scenario. This because using multicores decrease the communications,
-while the cores shared same nodes' link but the communications between the cores
-are less than the communication times between the nodes over the long distance
-networks, and thus the over all execution time decreased. Generally, executing
-the NAS benchmarks over the one site one core gives smaller execution times
-comparing to other scenarios. This because each node in this scenario has it's
-dedicated network link that used independently by one core, while in the other
-scenarios the communication times are higher when using long distance communication
-link or using the shared link communications between cores of each node.
-On the other hand, the energy consumptions of the NAS benchmarks over the
-one site one cores is less than the one site multicores scenario because
-this scenario had less execution time as mentioned before. Also, in the
-one site one core scenario the computations to communications ratio is
-higher, then the new scaled frequencies are decreased the dynamic energy
-consumption, because the dynamic power consumption are decreased exponentially
-with the new frequency scaling factors. These experiments also showed, the energy
-consumption and the execution times of EP and MG benchmarks over these four
-scenarios are not change a lot, because there are no or small communications
- which are increase or decrease the static power consumptions.
-The other benchmarks were showed that their energy consumptions and execution times
-are changed according to the decreasing or increasing in the communication
-times that are different from scenario to other or due to the amount of
-communications in each of them.
-
-The energy saving percentages of all NAS benchmarks, as in figure
-\ref{fig:eng-s-mc}, running over these four scenarios are presented. The figure
-showed the energy saving percentages of NAS benchmarks over two sites multicores scenario is higher
-than two sites once core scenario, this because the the computation
-times in the two sites multicores scenario is higher than the computation times
-of the two sites one core scenario, then the more reduction in the
-dynamic energy can be obtained as mentioned previously. In contrast, in the one site one
-core and one site multicores scenarios the energy saving percentages
-are approximately equivalent, on average they are up to 25\%. This
-because in the both scenarios there are a small difference in the
-computations to communications ratio, leading the proposed scaling algorithm
-to selects the frequencies proportionally to these ratios and keeping
-as much as possible the energy saving percentages the same. The
-performance degradation percentages of NAS benchmarks are presented in
-figure \ref{fig:per-d-mc}. This figure indicates that performance
-degradation percentages of running NAS benchmarks over two sites
-multocores, on average is equal to 7\%, gives more performance degradation percentage
-than two sites one core scenario, which on average is equal to 4\%.
-This because when using the two sites multicores scenario increased
-the computations to communications ratio, which may be increased the effect
-on the overall execution time when the proposed scaling algorithm is applied and scaling down the frequencies.
-The inverse was happened when the benchmarks are executed over one
-site one core scenario their performance degradation percentages, on average
-is equal to 10\%, are higher than those executed over one sit one core,
-which on average is equal to 7\%. This because in one site
-multicores scenario the computations to communications ratio is decreased
-as mentioned before, thus selecting new frequencies are less effect
-on the overall execution time. The tradeoff distances of all NAS
-benchmarks over all scenarios are presented in the figure \ref{fig:dist-mc}.
-These tradeoff distances are used to verified which scenario is the best in term of
-energy and performance ratio. The one sites multicores scenario is the best scenario in term of
-energy and performance tradeoff, on average is equal to 17.6\%, when comparing to the one site one core
-scenario, one average is equal to 15.3\%. This because the one site multicores scenario
-has the same energy saving percentages of the one site one core scenario but
-with less performance degradation. The two sites multicores scenario is gives better
-energy and performance tradeoff, one average is equal to 14.7\%, than the two sites
-one core, on average is equal to 13.3\%.
-Finally, using multicore in both scenarios increased the energy and performance tradeoff
-distance. This is because using multicores are increased the computations to communications
-ratio in two sites scenario and thus the energy saving increased over the performance degradation, whereas decreased this ratio
-in one site scenario causing the performance degradation decreased over the energy saving.
+
+The execution times for most of the NAS benchmarks are higher over the one site multi-cores per node scenario
+ than the execution time of those running over one site single core per node scenario. Indeed,
+ the communication times are higher in the one site multi-cores scenario than in the latter scenario because all the cores of a node share the same node network link which can be saturated when running communication bound applications.
+
+ \textcolor{blue}{On the other hand, the execution times for most of the NAS benchmarks are lower over
+the two sites multi-cores scenario than those over the two sites one core scenario. ???????
+}
+
+The experiments showed that for most of the NAS benchmarks and between the four scenarios,
+the one site one core scenario gives the best execution times because the communication times are the lowest.
+Indeed, in this scenario each core has a dedicated network link and all the communications are local.
+Moreover, the energy consumptions of the NAS benchmarks are lower over the
+one site one core scenario than over the one site multi-cores scenario because
+the first scenario had less execution time than the latter which results in less static energy being consumed.
+
+The computations to communications ratios of the NAS benchmarks are higher over
+the one site one core scenario when compared to the ratios of the other scenarios.
+More energy reduction was achieved when this ratio is increased because the proposed scaling algorithm selects smaller frequencies that decrease the dynamic power consumption.
+
+ \textcolor{blue}{ Whereas, the energy consumption in the two sites one core scenario is higher than the energy consumption of the two sites multi-core scenario. This is according to the increase in the execution time of the two sites one core scenario. }
+
+
+These experiments also showed that the energy
+consumption and the execution times of the EP and MG benchmarks do not change significantly over these four
+scenarios because there are no or small communications,
+which could increase or decrease the static power consumptions. Contrary to EP and MG, the energy consumptions
+and the execution times of the rest of the benchmarks vary according to the communication times that are different from one scenario to the other.
+
+
+The energy saving percentages of all NAS benchmarks running over these four scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that the energy saving percentages over the two sites multi-cores scenario
+and over the two sites one core scenario are on average equal to 22\% and 18\%
+respectively. The energy saving percentages are higher in the former scenario because its computations to communications ratio is higher than the ratio of the latter scenario as mentioned previously.
+
+In contrast, in the one site one
+core and one site multi-cores scenarios the energy saving percentages
+are approximately equivalent, on average they are up to 25\%. In both scenarios there
+are a small difference in the computations to communications ratios, which leads
+the proposed scaling algorithm to select similar frequencies for both scenarios.
+
+The performance degradation percentages of the NAS benchmarks are presented in
+figure \ref{fig:per-d-mc}. It shows that the performance degradation percentages for the NAS benchmarks are higher over the two sites
+multi-cores scenario than over the two sites one core scenario, equal on average to 7\% and 4\% respectively.
+Moreover, using the two sites multi-cores scenario increased
+the computations to communications ratio, which may increase
+the overall execution time when the proposed scaling algorithm is applied and the frequencies scaled down.