heterogeneous CPUs. Many methods were conceived to reduce the energy
consumption of this type of platform. Naveen et
al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
-minimizes the value of $energy\cdot delay^2$ (the delay is the sum of slack
-times that happen during synchronous communications) by dynamically assigning
-new frequencies to the CPUs of the heterogeneous cluster. Lizhe et
-al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an algorithm
-that divides the executed tasks into two types: the critical and non critical
-tasks. The algorithm scales down the frequency of non critical tasks
-proportionally to their slack and communication times while limiting the
-performance degradation percentage to less than
+minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
+the sum of slack times that happen during synchronous communications) by
+dynamically assigning new frequencies to the CPUs of the heterogeneous
+cluster. Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling}
+proposed an algorithm that divides the executed tasks into two types: the
+critical and non critical tasks. The algorithm scales down the frequency of non
+critical tasks proportionally to their slack and communication times while
+limiting the performance degradation percentage to less than
10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
heterogeneous cluster composed of two types of Intel and AMD processors. They
use a gradient method to predict the impact of DVFS operations on performance.
\State $F_i \gets F_i+\Fdiff_i,~i=1,\dots,N.$
\EndIf
\State $\Told \gets max_{~i=1,\dots,N } (\Tcp_i+\Tcm_i)$
- \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot \Tcp_i)} +\sum_{i=1}^{N} {(\Ps_i \cdot \Told)}$
+ % \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot \Tcp_i)} +\sum_{i=1}^{N} {(\Ps_i \cdot \Told)}$
+ \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot \Tcp_i + \Ps_i \cdot \Told)}$
\State $\Sopt_{i} \gets 1,~i=1,\dots,N. $
\State $\Dist \gets 0 $
\While {(all nodes not reach their minimum frequency)}
\State $S_i \gets \frac{\Fmax_i}{F_i},~i=1,\dots,N.$
\EndIf
\State $\Tnew \gets max_\textit{~i=1,\dots,N} (\Tcp_{i} \cdot S_{i}) + \MinTcm $
- \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot \Tcp_i)} + \sum_{i=1}^{N} {(\Ps_i \cdot \rlap{\Tnew)}} $
+% \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot \Tcp_i)} + \sum_{i=1}^{N} {(\Ps_i \cdot \rlap{\Tnew)}} $
+ \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot \Tcp_i + \Ps_i \cdot \rlap{\Tnew)}} $
\State $\Pnorm \gets \frac{\Told}{\Tnew}$
\State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
\If{$(\Pnorm - \Enorm > \Dist)$}
\subsection{The comparison of the proposed scaling algorithm }
\label{sec.compare_EDP}
-In this section, the scaling factors selection algorithm, called $\MaxDist$,
-is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, called EDP.
-They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Energy\cdot Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
-To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to start the search from the
-initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
+In this section, the scaling factors selection algorithm, called MaxDist, is
+compared to Spiliopoulos et al. algorithm
+\cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, called EDP. They developed a
+green governor that regularly applies an online frequency selecting algorithm to
+reduce the energy consumed by a multicore architecture without degrading much
+its performance. The algorithm selects the frequencies that minimize the energy
+and delay products, $\mathit{EDP}=\mathit{energy}\times \mathit{delay}$ using
+the predicted overall energy consumption and execution time delay for each
+frequency. To fairly compare both algorithms, the same energy and execution
+time models, equations (\ref{eq:energy}) and (\ref{eq:fnew}), were used for both
+algorithms to predict the energy consumption and the execution times. Also
+Spiliopoulos et al. algorithm was adapted to start the search from the initial
+frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm
+is an exhaustive search algorithm that minimizes the EDP and has the initial
+frequencies values as an upper bound.
Both algorithms were applied to the parallel NAS benchmarks to compare their
efficiency. Table~\ref{table:compare_EDP} presents the results of comparing the