\usepackage{algorithm}
\usepackage{subfig}
\usepackage{amsmath}
-
\usepackage{url}
\DeclareUrlCommand\email{\urlstyle{same}}
\newcommand{\JC}[2][inline]{%
\todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
-\newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
+\newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
+
+%% used to put some subscripts lower, and make them more legible
+\newcommand{\fxheight}[1]{\ifx#1\relax\relax\else\rule{0pt}{1.52ex}#1\fi}
-\newcommand{\Dist}{\textit{Dist}}
+\newcommand{\CL}{\Xsub{C}{L}}
+\newcommand{\Dist}{\mathit{Dist}}
+\newcommand{\EdNew}{\Xsub{E}{dNew}}
\newcommand{\Eind}{\Xsub{E}{ind}}
\newcommand{\Enorm}{\Xsub{E}{Norm}}
\newcommand{\Eoriginal}{\Xsub{E}{Original}}
\newcommand{\Ereduced}{\Xsub{E}{Reduced}}
-\newcommand{\Fdiff}{\Xsub{F}{diff}}
-\newcommand{\Fmax}{\Xsub{F}{max}}
+\newcommand{\Es}{\Xsub{E}{S}}
+\newcommand{\Fdiff}[1][]{\Xsub{F}{diff}_{\!#1}}
+\newcommand{\Fmax}[1][]{\Xsub{F}{max}_{\fxheight{#1}}}
\newcommand{\Fnew}{\Xsub{F}{new}}
\newcommand{\Ileak}{\Xsub{I}{leak}}
\newcommand{\Kdesign}{\Xsub{K}{design}}
-\newcommand{\MaxDist}{\textit{Max Dist}}
+\newcommand{\MaxDist}{\mathit{Max}\Dist}
+\newcommand{\MinTcm}{\mathit{Min}\Tcm}
\newcommand{\Ntrans}{\Xsub{N}{trans}}
-\newcommand{\Pdyn}{\Xsub{P}{dyn}}
-\newcommand{\PnormInv}{\Xsub{P}{NormInv}}
+\newcommand{\Pd}[1][]{\Xsub{P}{d}_{\fxheight{#1}}}
+\newcommand{\PdNew}{\Xsub{P}{dNew}}
+\newcommand{\PdOld}{\Xsub{P}{dOld}}
\newcommand{\Pnorm}{\Xsub{P}{Norm}}
-\newcommand{\Tnorm}{\Xsub{T}{Norm}}
-\newcommand{\Pstates}{\Xsub{P}{states}}
-\newcommand{\Pstatic}{\Xsub{P}{static}}
-\newcommand{\Sopt}{\Xsub{S}{opt}}
-\newcommand{\Tcomp}{\Xsub{T}{comp}}
-\newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
-\newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
-\newcommand{\Tmax}{\Xsub{T}{max}}
+\newcommand{\Ps}[1][]{\Xsub{P}{s}_{\fxheight{#1}}}
+\newcommand{\Scp}[1][]{\Xsub{S}{cp}_{#1}}
+\newcommand{\Sopt}[1][]{\Xsub{S}{opt}_{#1}}
+\newcommand{\Tcm}[1][]{\Xsub{T}{cm}_{\fxheight{#1}}}
+\newcommand{\Tcp}[1][]{\Xsub{T}{cp}_{#1}}
+\newcommand{\Ppeak}[1][]{\Xsub{P}{peak}_{#1}}
+\newcommand{\Pidle}[1][]{\Xsub{P}{idle}_{\fxheight{#1}}}
+\newcommand{\TcpOld}[1][]{\Xsub{T}{cpOld}_{#1}}
\newcommand{\Tnew}{\Xsub{T}{New}}
-\newcommand{\Told}{\Xsub{T}{Old}}
-\begin{document}
+\newcommand{\Told}{\Xsub{T}{Old}}
+
+\begin{document}
-\title{Energy Consumption Reduction In a Heterogeneous Architecture Using DVFS}
+\title{Energy Consumption Reduction with DVFS for \\
+ Message Passing Iterative Applications on \\
+ Heterogeneous Architectures}
\author{%
\IEEEauthorblockN{%
Raphaël Couturier,
Ahmed Fanfakh and
Arnaud Giersch
- }
+ }
\IEEEauthorblockA{%
- FEMTO-ST Institute\\
- University of Franche-Comté\\
+ FEMTO-ST Institute, University of Franche-Comté\\
IUT de Belfort-Montbéliard,
19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\
% Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël
\begin{abstract}
+
\end{abstract}
\section{Introduction}
\label{sec.intro}
+
\section{Related works}
\label{sec.relwork}
-Energy reduction process for a high performance clusters recently performed using dynamic voltage and frequency scaling (DVFS) technique. DVFS is a technique enabled in a modern processors to scaled down both of the voltage and the frequency of the CPU while it is in the computing mode to reduce the energy consumption. DVFS is also allowed in the graphical processors GPUs, to achieved the same goal. Applying DVFS has a dramatical side effect if it is applied to minimum levels to gain more energy reduction, producing a high percentage of performance degradations for the parallel applications. Many researchers used different strategies to solve this nonlinear problem for example in~\cite{19,42}, their methods add big overheads to the algorithm to select the
-suitable frequency. In this paper we present a method to find the optimal
-set of frequency scaling factors for a heterogeneous cluster to simultaneously optimize both the energy and the execution time without adding a big overhead.
-This work is developed from our previous work of a homogeneous cluster~\cite{45}. Therefore we are interested to present some works that concerned the heterogeneous clusters enabled DVFS. In general, the heterogeneous cluster works fall into two categorizes: GPUs-CPUs heterogeneous clusters and CPUs-CPUs heterogeneous clusters. In GPUs-CPUs heterogeneous clusters some parallel tasks executed on a GPUs and the others executed on a CPUs. As an example of this works, Luley et al.~\cite{51}, proposed a heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal is to determined the energy efficiency as a function of performance per watt, the best tradeoff is done when the performance per watt function is maximized. In the work of Kia Ma et al.~\cite{49}, They developed a scheduling algorithm to distribute different workloads proportional to the computing power of the node to be executed on a CPU or a GPU, emphasize all tasks must be finished in the same time.
-Recently, Rong et al.~\cite{50}, Their study explain that a heterogeneous clusters enabled DVFS using GPUs and CPUs gave better energy and performance efficiency
-than other clusters composed of only CPUs. The CPUs-CPUs heterogeneous clusters consist of number of computing nodes all of the type CPU. Our work in this paper can be classified to this type of the clusters. As an example of this works see Naveen et al.~\cite{52} work, They developed a policy to dynamically assigned the frequency to a heterogeneous cluster. The goal is to minimizing a fixed metric of $energy*delay^2$. Where our proposed method is automatically optimized the relation between the energy and the delay of the iterative applications. Other works such as Lizhe et al.~\cite{53}, their algorithm divided the executed tasks into two types: the critical and non critical tasks. The algorithm scaled down the frequency of the non critical tasks as function to the amount of the slack and communication times that have with maximum of performance degradation percentage of 10\%. In our method there is no fixed bounds for performance degradation percentage and the bound is dynamically computed according to the energy and the performance tradeoff relation of the executed application.
-There are some approaches used a heterogeneous cluster composed from two different types of Intel and AMD processors such as~\cite{54} and \cite{55}, they predicated both the energy and the performance for each frequency gear, then the algorithm selected the best gear that gave the best tradeoff. In contrast our algorithm works over a heterogeneous platform composed of four different types of processors. Others approaches such as \cite{56} and \cite{57}, they are selected the best frequencies for a specified heterogeneous clusters offline using some heuristic methods. While our proposed algorithm works online during the execution time of iterative application. Greedy dynamic approach used by Chen et al.~\cite{58}, minimized the power consumption of a heterogeneous severs with time/space complexity, this approach had considerable overhead. In our proposed scaling algorithm has very small overhead and it is works without any previous analysis for the application time complexity.
+
\section{The performance and energy consumption measurements on heterogeneous architecture}
\label{sec.exe}
-% \JC{The whole subsection ``Parallel Tasks Execution on Homogeneous Platform'',
-% can be deleted if we need space, we can just say we are interested in this
-% paper in homogeneous clusters}
-
-\subsection{The execution time of message passing distributed iterative applications on a heterogeneous platform}
+\subsection{The execution time of message passing distributed iterative
+ applications on a heterogeneous platform}
In this paper, we are interested in reducing the energy consumption of message
passing distributed iterative synchronous applications running over
-heterogeneous platforms. We define a heterogeneous platform as a collection of
-heterogeneous computing nodes interconnected via a high speed homogeneous
-network. Therefore, each node has different characteristics such as computing
-power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
-have the same network bandwidth and latency.
-
-
+heterogeneous grid platforms. A heterogeneous grid platform could be defined as a collection of
+heterogeneous computing clusters interconnected via a long distance network which has lower bandwidth
+and higher latency than the local networks of the clusters. Each computing cluster in the grid is composed of homogeneous nodes that are connected together via high speed network. Therefore, each cluster has different characteristics such as computing power (FLOPS), energy consumption, CPU's frequency range, network bandwidth and latency.
- The overall execution time of a distributed iterative synchronous application over a heterogeneous platform consists of the sum of the computation time and the communication time for every iteration on a node. However, due to the heterogeneous computation power of the computing nodes, slack times might occur when fast nodes have to
- wait, during synchronous communications, for the slower nodes to finish their computations (see Figure~(\ref{fig:heter}).
- Therefore, the overall execution time of the program is the execution time of the slowest
- task which have the highest computation time and no slack time.
-
- \begin{figure}[t]
+\begin{figure}[!t]
\centering
- \includegraphics[scale=0.6]{fig/commtasks}
+ \includegraphics[scale=0.6]{fig/commtasks}
\caption{Parallel tasks on a heterogeneous platform}
\label{fig:heter}
\end{figure}
-Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in modern processors, that reduces the energy consumption
-of a CPU by scaling down its voltage and frequency. Since DVFS lowers the frequency of a CPU and consequently its computing power, the execution time of a program running over that scaled down processor might increase, especially if the program is compute bound. The frequency reduction process can be expressed by the scaling factor S which is the ratio between the maximum and the new frequency of a CPU as in EQ (\ref{eq:s}).
+The overall execution time of a distributed iterative synchronous application
+over a heterogeneous grid consists of the sum of the computation time and
+the communication time for every iteration on a node. However, due to the
+heterogeneous computation power of the computing clusters, slack times may occur
+when fast nodes have to wait, during synchronous communications, for the slower
+nodes to finish their computations (see Figure~\ref{fig:heter}). Therefore, the
+overall execution time of the program is the execution time of the slowest task
+which has the highest computation time and no slack time.
+
+Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
+modern processors, that reduces the energy consumption of a CPU by scaling
+down its voltage and frequency. Since DVFS lowers the frequency of a CPU
+and consequently its computing power, the execution time of a program running
+over that scaled down processor may increase, especially if the program is
+compute bound. The frequency reduction process can be expressed by the scaling
+factor S which is the ratio between the maximum and the new frequency of a CPU
+as in (\ref{eq:s}).
\begin{equation}
\label{eq:s}
- S = \frac{F_\textit{max}}{F_\textit{new}}
+ S = \frac{\Fmax}{\Fnew}
\end{equation}
- The execution time of a compute bound sequential program is linearly proportional to the frequency scaling factor $S$.
- On the other hand, message passing distributed applications consist of two parts: computation and communication. The execution time of the computation part is linearly proportional to the frequency scaling factor $S$ but the communication time is not affected by the scaling factor because the processors involved remain idle during the communications~\cite{17}. The communication time for a task is the summation of periods of time that begin with an MPI call for sending or receiving a message till the message is synchronously sent or received.
-
-Since in a heterogeneous platform, each node has different characteristics,
-especially different frequency gears, when applying DVFS operations on these
-nodes, they may get different scaling factors represented by a scaling vector:
-$(S_1, S_2,\dots, S_N)$ where $S_i$ is the scaling factor of processor $i$. To
+The execution time of a compute bound sequential program is linearly
+proportional to the frequency scaling factor $S$. On the other hand, message
+passing distributed applications consist of two parts: computation and
+communication. The execution time of the computation part is linearly
+proportional to the frequency scaling factor $S$ but the communication time is
+not affected by the scaling factor because the processors involved remain idle
+during the communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}. The
+communication time for a task is the summation of periods of time that begin
+with an MPI call for sending or receiving a message until the message is
+synchronously sent or received.
+
+Since in a heterogeneous grid each cluster has different characteristics,
+especially different frequency gears, when applying DVFS operations on the nodes
+of these clusters, they may get different scaling factors represented by a scaling vector:
+$(S_{11}, S_{12},\dots, S_{NM})$ where $S_{ij}$ is the scaling factor of processor $j$ in cluster $i$ . To
be able to predict the execution time of message passing synchronous iterative
-applications running over a heterogeneous platform, for different vectors of
+applications running over a heterogeneous grid, for different vectors of
scaling factors, the communication time and the computation time for all the
tasks must be measured during the first iteration before applying any DVFS
operation. Then the execution time for one iteration of the application with any
-vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
+vector of scaling factors can be predicted using (\ref{eq:perf}).
\begin{equation}
\label{eq:perf}
- \textit T_\textit{new} =
- \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) + MinTcm
+ \Tnew = \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\TcpOld[ij]} \cdot S_{ij})
+ +\mathop{\min_{j=1,\dots,M}} (\Tcm[hj])
\end{equation}
-where $TcpOld_i$ is the computation time of processor $i$ during the first iteration and $MinTcm$ is the communication time of the slowest processor from the first iteration. The model computes the maximum computation time
- with scaling factor from each node added to the communication time of the slowest node, it means only the
- communication time without any slack time. Therefore, we can consider the execution time of the iterative application is equal to the execution time of one iteration as in EQ(\ref{eq:perf}) multiplied by the number of iterations of that application.
-This prediction model is based on our model for predicting the execution time of message passing distributed applications for homogeneous architectures~\cite{45}. The execution time prediction model is used in our method for optimizing both energy consumption and performance of iterative methods, which is presented in the following sections.
+where $N$ is the number of clusters in the grid, $M$ is the number of nodes in
+each cluster, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$
+and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the
+first iteration. The model computes the maximum computation time with scaling factor
+from each node added to the communication time of the slowest node in the slowest cluster $h$.
+It means only the communication time without any slack time is taken into account.
+Therefore, the execution time of the iterative application is equal to
+the execution time of one iteration as in (\ref{eq:perf}) multiplied by the
+number of iterations of that application.
+
+This prediction model is developed from the model to predict the execution time
+of message passing distributed applications for homogeneous and heterogeneous clusters
+~\cite{Our_first_paper,pdsec2015}. The execution time prediction model is
+used in the method to optimize both the energy consumption and the performance
+of iterative methods, which is presented in the following sections.
\subsection{Energy model for heterogeneous platform}
-Many researchers~\cite{9,3,15,26} divide the power consumed by a processor into
-two power metrics: the static and the dynamic power. While the first one is
-consumed as long as the computing unit is turned on, the latter is only consumed during
-computation times. The dynamic power $P_{d}$ is related to the switching
-activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
-operational frequency $F$, as shown in EQ(\ref{eq:pd}).
+
+Many researchers~\cite{Malkowski_energy.efficient.high.performance.computing,
+ Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling,
+ Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by
+a processor into two power metrics: the static and the dynamic power. While the
+first one is consumed as long as the computing unit is turned on, the latter is
+only consumed during computation times. The dynamic power $\Pd$ is related to
+the switching activity $\alpha$, load capacitance $\CL$, the supply voltage $V$
+and operational frequency $F$, as shown in (\ref{eq:pd}).
\begin{equation}
\label{eq:pd}
- P_\textit{d} = \alpha \cdot C_L \cdot V^2 \cdot F
+ \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
\end{equation}
-The static power $P_{s}$ captures the leakage power as follows:
+The static power $\Ps$ captures the leakage power as follows:
\begin{equation}
\label{eq:ps}
- P_\textit{s} = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
+ \Ps = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
\end{equation}
-where V is the supply voltage, $N_{trans}$ is the number of transistors,
-$K_{design}$ is a design dependent parameter and $I_{leak}$ is a
-technology-dependent parameter. The energy consumed by an individual processor
+where V is the supply voltage, $\Ntrans$ is the number of transistors,
+$\Kdesign$ is a design dependent parameter and $\Ileak$ is a
+technology dependent parameter. The energy consumed by an individual processor
to execute a given program can be computed as:
\begin{equation}
\label{eq:eind}
- E_\textit{ind} = P_\textit{d} \cdot Tcp + P_\textit{s} \cdot T
+ \Eind = \Pd \cdot \Tcp + \Ps \cdot T
\end{equation}
-where $T$ is the execution time of the program, $T_{cp}$ is the computation
-time and $T_{cp} \leq T$. $T_{cp}$ may be equal to $T$ if there is no
+where $T$ is the execution time of the program, $\Tcp$ is the computation
+time and $\Tcp \le T$. $\Tcp$ may be equal to $T$ if there is no
communication and no slack time.
-The main objective of DVFS operation is to
-reduce the overall energy consumption~\cite{37}. The operational frequency $F$
-depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
-constant $\beta$. This equation is used to study the change of the dynamic
-voltage with respect to various frequency values in~\cite{3}. The reduction
-process of the frequency can be expressed by the scaling factor $S$ which is the
-ratio between the maximum and the new frequency as in EQ~(\ref{eq:s}).
-The CPU governors are power schemes supplied by the operating
-system's kernel to lower a core's frequency. we can calculate the new frequency
-$F_{new}$ from EQ(\ref{eq:s}) as follow:
+The main objective of DVFS operation is to reduce the overall energy
+consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}. The operational
+frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot
+F$ with some constant $\beta$.~This equation is used to study the change of the
+dynamic voltage with respect to various frequency values
+in~\cite{Rauber_Analytical.Modeling.for.Energy}. The reduction process of the
+frequency can be expressed by the scaling factor $S$ which is the ratio between
+the maximum and the new frequency as in (\ref{eq:s}). The CPU governors are
+power schemes supplied by the operating system's kernel to lower a core's
+frequency. The new frequency $\Fnew$ from (\ref{eq:s}) can be calculated as
+follows:
\begin{equation}
\label{eq:fnew}
- F_\textit{new} = S^{-1} \cdot F_\textit{max}
+ \Fnew = S^{-1} \cdot \Fmax
\end{equation}
-Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following equation for dynamic
-power consumption:
+Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following
+equation for dynamic power consumption:
\begin{multline}
\label{eq:pdnew}
- {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
- {} = \alpha \cdot C_L \cdot V^2 \cdot F_{max} \cdot S^{-3} = P_{dOld} \cdot S^{-3}
+ \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
+ {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
\end{multline}
-where $ {P}_\textit{dNew}$ and $P_{dOld}$ are the dynamic power consumed with the new frequency and the maximum frequency respectively.
-
-According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when
-reducing the frequency by a factor of $S$~\cite{3}. Since the FLOPS of a CPU is proportional to the frequency of a CPU, the computation time is increased proportionally to $S$. The new dynamic energy is the dynamic power multiplied by the new time of computation and is given by the following equation:
+where $\PdNew$ and $\PdOld$ are the dynamic power consumed with the
+new frequency and the maximum frequency respectively.
+
+According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of
+$S^{-3}$ when reducing the frequency by a factor of
+$S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is
+proportional to the frequency of a CPU, the computation time is increased
+proportionally to $S$. The new dynamic energy is the dynamic power multiplied
+by the new time of computation and is given by the following equation:
\begin{equation}
\label{eq:Edyn}
- E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (Tcp \cdot S)= S^{-2}\cdot P_{dOld} \cdot Tcp
+ \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot \Tcp
\end{equation}
-The static power is related to the power leakage of the CPU and is consumed during computation and even when idle. As in~\cite{3,46}, we assume that the static power of a processor is constant during idle and computation periods, and for all its available frequencies.
-The static energy is the static power multiplied by the execution time of the program. According to the execution time model in EQ(\ref{eq:perf}),
-the execution time of the program is the summation of the computation and the communication times. The computation time is linearly related
-to the frequency scaling factor, while this scaling factor does not affect the communication time. The static energy
-of a processor after scaling its frequency is computed as follows:
+The static power is related to the power leakage of the CPU and is consumed
+during computation and even when idle. As
+in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling},
+the static power of a processor is considered as constant during idle and
+computation periods, and for all its available frequencies. The static energy
+is the static power multiplied by the execution time of the program. According
+to the execution time model in (\ref{eq:perf}), the execution time of the
+program is the sum of the computation and the communication times. The
+computation time is linearly related to the frequency scaling factor, while this
+scaling factor does not affect the communication time. The static energy of a
+processor after scaling its frequency is computed as follows:
\begin{equation}
\label{eq:Estatic}
- E_\textit{s} = P_\textit{s} \cdot (Tcp \cdot S + Tcm)
+ \Es = \Ps \cdot (\Tcp \cdot S + \Tcm)
\end{equation}
-In the considered heterogeneous platform, each processor $i$ might have different dynamic and static powers, noted as $Pd_{i}$ and $Ps_{i}$ respectively. Therefore, even if the distributed message passing iterative application is load balanced, the computation time of each CPU $i$ noted $Tcp_{i}$ might be different and different frequency scaling factors might be computed in order to decrease the overall energy consumption of the application and reduce the slack times. The communication time of a processor $i$ is noted as $Tcm_{i}$ and could contain slack times if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do not have equal communication times. While the dynamic energy is computed according to the frequency scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}), the static energy is computed as the sum of the execution time of each processor multiplied by its static power. The overall energy consumption of a message passing distributed application executed over a heterogeneous platform during one iteration is the summation of all dynamic and static energies for each processor. It is computed as follows:
+In the considered heterogeneous grid platform, each node $j$ in cluster $i$ may have
+different dynamic and static powers from the nodes of the other clusters,
+noted as $\Pd[ij]$ and $\Ps[ij]$ respectively. Therefore, even if the distributed
+message passing iterative application is load balanced, the computation time of each CPU $j$
+in cluster $i$ noted $\Tcp[ij]$ may be different and different frequency scaling factors may be
+computed in order to decrease the overall energy consumption of the application
+and reduce slack times. The communication time of a processor $j$ in cluster $i$ is noted as
+$\Tcm[ij]$ and could contain slack times when communicating with slower nodes,
+see Figure~\ref{fig:heter}. Therefore, all nodes do not have equal
+communication times. While the dynamic energy is computed according to the
+frequency scaling factor and the dynamic power of each node as in
+(\ref{eq:Edyn}), the static energy is computed as the sum of the execution time
+of one iteration multiplied by the static power of each processor. The overall
+energy consumption of a message passing distributed application executed over a
+heterogeneous grid platform during one iteration is the summation of all dynamic and
+static energies for $M$ processors in $N$ clusters. It is computed as follows:
\begin{multline}
\label{eq:energy}
- E = \sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_{i} \cdot Tcp_i)} + {} \\
- \sum_{i=1}^{N} (Ps_{i} \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) +
- {MinTcm))}
- \end{multline}
-
-Reducing the frequencies of the processors according to the vector of
-scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
-application and thus, increase the static energy because the execution time is
-increased~\cite{36}. We can measure the overall energy consumption for the iterative
-application by measuring the energy consumption for one iteration as in EQ(\ref{eq:energy}) multiplied by
-the number of iterations of that application.
+ E = \sum_{i=1}^{N} \sum_{i=1}^{M} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} +
+ \sum_{i=1}^{N} \sum_{j=1}^{M} (\Ps[ij] \cdot {} \\
+ (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}({\Tcp[ij]} \cdot S_{ij})
+ +\mathop{\min_{j=1,\dots M}} (\Tcm[hj]) ))
+\end{multline}
+Reducing the frequencies of the processors according to the vector of scaling
+factors $(S_{11}, S_{12},\dots, S_{NM})$ may degrade the performance of the application
+and thus, increase the static energy because the execution time is
+increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption
+for the iterative application can be measured by measuring the energy
+consumption for one iteration as in (\ref{eq:energy}) multiplied by the number
+of iterations of that application.
\section{Optimization of both energy consumption and performance}
\label{sec.compet}
-Using the lowest frequency for each processor does not necessarily gives the most energy efficient execution of an application. Indeed, even though the dynamic power is reduced while scaling down the frequency of a processor, its computation power is proportionally decreased and thus the execution time might be drastically increased during which dynamic and static powers are being consumed. Therefore, it might cancel any gains achieved by scaling down the frequency of all nodes to the minimum and the overall energy consumption of the application might not be the optimal one. It is not trivial to select the appropriate frequency scaling factor for each processor while considering the characteristics of each processor (computation power, range of frequencies, dynamic and static powers) and the task executed (computation/communication ratio) in order to reduce the overall energy consumption and not significantly increase the execution time. In our previous work~\cite{45}, we proposed a method that selects the optimal
-frequency scaling factor for a homogeneous cluster executing a message passing iterative synchronous application while giving the best trade-off
- between the energy consumption and the performance for such applications. In this work we are interested in
-heterogeneous clusters as described above. Due to the heterogeneity of the processors, not one but a vector of scaling factors should be selected and it must give the best trade-off between energy consumption and performance.
-
-The relation between the energy consumption and the execution
-time for an application is complex and nonlinear, Thus, unlike the relation between the execution time
-and the scaling factor, the relation of the energy with the frequency scaling
-factors is nonlinear, for more details refer to~\cite{17}. Moreover, they are
-not measured using the same metric. To solve this problem, we normalize the
-execution time by computing the ratio between the new execution time (after scaling down the frequencies of some processors) and the initial one (with maximum frequency for all nodes,) as follows:
-\begin{multline}
+Using the lowest frequency for each processor does not necessarily give the most
+energy efficient execution of an application. Indeed, even though the dynamic
+power is reduced while scaling down the frequency of a processor, its
+computation power is proportionally decreased. Hence, the execution time might
+be drastically increased and during that time, dynamic and static powers are
+being consumed. Therefore, it might cancel any gains achieved by scaling down
+the frequency of all nodes to the minimum and the overall energy consumption of
+the application might not be the optimal one. It is not trivial to select the
+appropriate frequency scaling factor for each processor while considering the
+characteristics of each processor (computation power, range of frequencies,
+dynamic and static powers) and the task executed (computation/communication
+ratio). The aim being to reduce the overall energy consumption and to avoid
+increasing significantly the execution time. In our previous
+work~\cite{Our_first_paper,pdsec2015}, we proposed a method that selects the optimal
+frequency scaling factor for a homogeneous and heterogeneous clusters executing a message passing
+iterative synchronous application while giving the best trade-off between the
+energy consumption and the performance for such applications. In this work we
+are interested in heterogeneous grid as described above. Due to the
+heterogeneity of the processors, a vector of scaling factors should be selected
+and it must give the best trade-off between energy consumption and performance.
+
+The relation between the energy consumption and the execution time for an
+application is complex and nonlinear, Thus, unlike the relation between the
+execution time and the scaling factor, the relation between the energy and the
+frequency scaling factors is nonlinear, for more details refer
+to~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}. Moreover, these relations
+are not measured using the same metric. To solve this problem, the execution
+time is normalized by computing the ratio between the new execution time (after
+scaling down the frequencies of some processors) and the initial one (with
+maximum frequency for all nodes) as follows:
+\begin{equation}
\label{eq:pnorm}
- P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
- {} = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +MinTcm}
- {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
-\end{multline}
-
-
-In the same way, we normalize the energy by computing the ratio between the consumed energy while scaling down the frequency and the consumed energy with maximum frequency for all nodes:
-\begin{multline}
- \label{eq:enorm}
- E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
- {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot Tcp_i)} +
- \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot Tcp_i)} +
- \sum_{i=1}^{N} {(Ps_i@+eYd162 \cdot T_{Old})}}
-\end{multline}
-Where $T_{New}$ and $T_{Old}$ are computed as in EQ(\ref{eq:pnorm}).
-
- While the main
-goal is to optimize the energy and execution time at the same time, the normalized energy and execution time curves are not in the same direction. According
-to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the vector of frequency
-scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
-time simultaneously. But the main objective is to produce maximum energy
-reduction with minimum execution time reduction.
-
-
-
-Our solution for this problem is to make the optimization process for energy and execution time follow the same
-direction. Therefore, we inverse the equation of the normalized execution time which gives
-the normalized performance equation, as follows:
-\begin{multline}
- \label{eq:pnorm_inv}
- P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
- = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
- { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm}
-\end{multline}
+ \Pnorm = \frac{\Tnew}{\Told}
+\end{equation}
-\begin{figure}
- \centering
- \subfloat[Homogeneous platform]{%
- \includegraphics[width=.22\textwidth]{fig/homo}\label{fig:r1}}%
- \qquad%
- \subfloat[Heterogeneous platform]{%
- \includegraphics[width=.22\textwidth]{fig/heter}\label{fig:r2}}
- \label{fig:rel}
- \caption{The energy and performance relation}
-\end{figure}
-
-Then, we can model our objective function as finding the maximum distance
-between the energy curve EQ~(\ref{eq:enorm}) and the performance
-curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors. This
-represents the minimum energy consumption with minimum execution time (maximum
-performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}) . Then our objective
-function has the following form:
+Where $Tnew$ is computed as in (\ref{eq:perf}) and $Told$ is computed as in (\ref{eq:told})
\begin{equation}
- \label{eq:max}
- Max Dist =
- \max_{i=1,\dots F, j=1,\dots,N}
- (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
- \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
+ \label{eq:told}
+ \Told = \mathop{\max_{i=1,2,\dots,N}}_{j=1,2,\dots,M} (\Tcp[ij]+\Tcm[ij])
+\end{equation}
+In the same way, the energy is normalized by computing the ratio between the
+consumed energy while scaling down the frequency and the consumed energy with
+maximum frequency for all nodes:
+\begin{equation}
+ \label{eq:enorm}
+ \Enorm = \frac{\Ereduced}{\Eoriginal}
\end{equation}
-where $N$ is the number of nodes and $F$ is the number of available frequencies for each nodes.
-Then we can select the optimal set of scaling factors that satisfies EQ~(\ref{eq:max}). Our objective function can
-work with any energy model or any power values for each node (static and dynamic powers).
-However, the most energy reduction gain can be achieved when the energy curve has a convex form as shown in~\cite{15,3,19}.
-
-\section{The scaling factors selection algorithm for heterogeneous platforms }
-\label{sec.optim}
-
-In this section we propose algorithm~(\ref{HSA}) which selects the frequency scaling factors vector that gives the best trade-off between minimizing the energy consumption and maximizing the performance of a message passing synchronous iterative application executed on a heterogeneous platform.
-It works online during the execution time of the iterative message passing program. It uses information gathered during the first iteration such as the computation time and the communication time in one iteration for each node. The algorithm is executed after the first iteration and returns a vector of optimal frequency scaling factors that satisfies the objective function EQ(\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs according to the computed scaling factors. This algorithm is called just once during the execution of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called in the iterative MPI program.
+Where $\Ereduced$ is computed using (\ref{eq:energy}) and $\Eoriginal$ is
+computed as in ().
-The nodes in a heterogeneous platform have different computing powers, thus while executing message passing iterative synchronous applications, fast nodes have to wait for the slower ones to finish their computations before being able to synchronously communicate with them as in figure (\ref{fig:heter}). These periods are called idle or slack times.
-Our algorithm takes into account this problem and tries to reduce these slack times when selecting the frequency scaling factors vector. At first, it selects initial frequency scaling factors that increase the execution times of fast nodes and minimize the differences between the computation times of fast and slow nodes. The value of the initial frequency scaling factor for each node is inversely proportional to its computation time that was gathered from the first iteration. These initial frequency scaling factors are computed as a ratio between the computation time of the slowest node and the computation time of the node $i$ as follows:
+\textcolor{red}{A reference is missing}
\begin{equation}
- \label{eq:Scp}
- Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
+ \label{eq:eorginal}
+ \Eoriginal = \sum_{i=1}^{N} \sum_{j=1}^{M} ( \Pd[ij] \cdot \Tcp[ij]) +
+ \mathop{\sum_{i=1}^{N}} \sum_{j=1}^{M} (\Ps[ij] \cdot \Told)
\end{equation}
-Using the initial frequency scaling factors computed in EQ(\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the
-maximum frequency of node $i$ and the computation scaling factor $Scp_i$ as follows:
+
+While the main goal is to optimize the energy and execution time at the same
+time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way.
+According to the equations~(\ref{eq:pnorm}) and (\ref{eq:enorm}), the
+vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy
+and the execution time simultaneously. But the main objective is to produce
+maximum energy reduction with minimum execution time reduction.
+
+This problem can be solved by making the optimization process for energy and
+execution time follow the same evolution according to the vector of scaling factors
+$(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the
+normalized execution time is inverted which gives the normalized performance
+equation, as follows:
\begin{equation}
- \label{eq:Fint}
- F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
+ \label{eq:pnorm_inv}
+ \Pnorm = \frac{\Told}{\Tnew}
\end{equation}
-If the computed initial frequency for a node is not available in the gears of that node, the computed initial frequency is replaced by the nearest available frequency.
-In figure (\ref{fig:st_freq}), the nodes are sorted by their computing powers in ascending order and the frequencies of the faster nodes are scaled down according to the computed initial frequency scaling factors. The resulting new frequencies are colored in blue in figure (\ref{fig:st_freq}). This set of frequencies can be considered as a higher bound for the search space of the optimal vector of frequencies because selecting frequency scaling factors higher than the higher bound will not improve the performance of the application and it will increase its overall energy consumption. Therefore the algorithm that selects the frequency scaling factors starts the search method from these initial frequencies and takes a downward search direction toward lower frequencies. The algorithm iterates on all left frequencies, from the higher bound until all nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of all other nodes by one gear.
-The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the highest distance according to the objective function EQ(\ref{eq:max}).
-The plots~(\ref{fig:r1} and \ref{fig:r2}) illustrate the normalized performance and consumed energy for an application running on a homogeneous platform and a heterogeneous platform respectively while increasing the scaling factors. It can be noticed that in a homogeneous platform the search for the optimal scaling factor should be started from the maximum frequency because the performance and the consumed energy is decreased since the beginning of the plot. On the other hand, in the heterogeneous platform the performance is maintained at the beginning of the plot even if the frequencies of the faster nodes are decreased until the scaled down nodes have computing powers lower than the slowest node. In other words, until they reach the higher bound. It can also be noticed that the higher the difference between the faster nodes and the slower nodes is, the bigger the maximum distance between the energy curve and the performance curve is while varying the scaling factors which results in bigger energy savings.
-\begin{figure}[t]
+\begin{figure}[!t]
\centering
- \includegraphics[scale=0.5]{fig/start_freq}
- \caption{Selecting the initial frequencies}
- \label{fig:st_freq}
-\end{figure}
-
-
+ \subfloat[Homogeneous cluster]{%
+ \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
+ \subfloat[Heterogeneous grid]{%
+ \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
+ \label{fig:rel}
+ \caption{The energy and performance relation}
+\end{figure}
+Then, the objective function can be modeled in order to find the maximum
+distance between the energy curve (\ref{eq:enorm}) and the performance curve
+(\ref{eq:pnorm_inv}) over all available sets of scaling factors. This
+represents the minimum energy consumption with minimum execution time (maximum
+performance) at the same time, see Figure~\ref{fig:r1} or
+Figure~\ref{fig:r2}. Then the objective function has the following form:
+\begin{equation}
+ \label{eq:max}
+ \MaxDist =
+\mathop{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}}_{k=1,\dots,F}
+ (\overbrace{\Pnorm(S_{ijk})}^{\text{Maximize}} -
+ \overbrace{\Enorm(S_{ijk})}^{\text{Minimize}} )
+\end{equation}
+where $N$ is the number of clusters, $M$ is the number of nodes in each cluster and
+$F$ is the number of available frequencies for each node. Then, the optimal set
+of scaling factors that satisfies (\ref{eq:max}) can be selected.
+The objective function can work with any energy model or any power
+values for each node (static and dynamic powers). However, the most important
+energy reduction gain can be achieved when the energy curve has a convex form as shown
+in~\cite{Zhuo_Energy.efficient.Dynamic.Task.Scheduling,Rauber_Analytical.Modeling.for.Energy,Hao_Learning.based.DVFS}.
+
+\section{The scaling factors selection algorithm for grids }
+\label{sec.optim}
\begin{algorithm}
\begin{algorithmic}[1]
% \footnotesize
\Require ~
\begin{description}
- \item[$Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
- \item[$Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
- \item[$Fmax_i$] array of the maximum frequencies for all nodes.
- \item[$Pd_i$] array of the dynamic powers for all nodes.
- \item[$Ps_i$] array of the static powers for all nodes.
- \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
+ \item [{$N$}] number of clusters in the grid.
+ \item [{$M$}] number of nodes in each cluster.
+ \item[{$\Tcp[ij]$}] array of all computation times for all nodes during one iteration and with the highest frequency.
+ \item[{$\Tcm[ij]$}] array of all communication times for all nodes during one iteration and with the highest frequency.
+ \item[{$\Fmax[ij]$}] array of the maximum frequencies for all nodes.
+ \item[{$\Pd[ij]$}] array of the dynamic powers for all nodes.
+ \item[{$\Ps[ij]$}] array of the static powers for all nodes.
+ \item[{$\Fdiff[ij]$}] array of the differences between two successive frequencies for all nodes.
\end{description}
- \Ensure $Sopt_1,Sopt_2 \dots, Sopt_N$ is a vector of optimal scaling factors
+ \Ensure $\Sopt[11],\Sopt[12] \dots, \Sopt[NM_i]$, a vector of scaling factors that gives the optimal tradeoff between energy consumption and execution time
- \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
- \State $F_{i} \gets \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
- \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
+ \State $\Scp[ij] \gets \frac{\max_{i=1,2,\dots,N}(\max_{j=1,2,\dots,M_i}(\Tcp[ij]))}{\Tcp[ij]} $
+ \State $F_{ij} \gets \frac{\Fmax[ij]}{\Scp[i]},~{i=1,2,\cdots,N},~{j=1,2,\dots,M_i}.$
+ \State Round the computed initial frequencies $F_i$ to the closest available frequency for each node.
\If{(not the first frequency)}
- \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
- \EndIf
- \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
- \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
- \State $Dist \gets 0$
- \State $Sopt_{i} \gets 1,~i=1,\dots,N. $
- \While {(all nodes not reach their minimum frequency)}
+ \State $F_{ij} \gets F_{ij}+\Fdiff[ij],~i=1,\dots,N,~{j=1,\dots,M_i}.$
+ \EndIf
+ \State $\Told \gets $ computed as in equations (\ref{eq:told}).
+ \State $\Eoriginal \gets $ computed as in equations (\ref{eq:eorginal}) .
+ \State $\Sopt[ij] \gets 1,~i=1,\dots,N,~{j=1,\dots,M_i}. $
+ \State $\Dist \gets 0 $
+ \While {(all nodes have not reached their minimum \newline\hspace*{2.5em} frequency \textbf{or} $\Pnorm - \Enorm < 0 $)}
\If{(not the last freq. \textbf{and} not the slowest node)}
- \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
- \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,\dots,N.$
+ \State $F_{ij} \gets F_{ij} - \Fdiff[ij],~{i=1,\dots,N},~{j=1,\dots,M_i}$.
+ \State $S_{ij} \gets \frac{\Fmax[ij]}{F_{ij}},~{i=1,\dots,N},~{j=1,\dots,M_i}.$
\EndIf
- \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm $
- \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot Tcp_i)} + $ \hspace*{43 mm}
- $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
- \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
- \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
+ \State $\Tnew \gets $ computed as in equations (\ref{eq:perf}).
+ \State $\Ereduced \gets $ computed as in equations (\ref{eq:energy}).
+ \State $\Pnorm \gets \frac{\Told}{\Tnew}$
+ \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
\If{$(\Pnorm - \Enorm > \Dist)$}
- \State $Sopt_{i} \gets S_{i},~i=1,\dots,N. $
+ \State $\Sopt[ij] \gets S_{ij},~i=1,\dots,N,~j=1,\dots,M_i. $
\State $\Dist \gets \Pnorm - \Enorm$
\EndIf
\EndWhile
- \State Return $Sopt_1,Sopt_2,\dots,Sopt_N$
+ \State Return $\Sopt[11],\Sopt[12],\dots,\Sopt[NM_i]$
\end{algorithmic}
- \caption{Heterogeneous scaling algorithm}
+ \caption{Scaling factors selection algorithm}
\label{HSA}
\end{algorithm}
\If {$(k=1)$}
\State Gather all times of computation and\newline\hspace*{3em}%
communication from each node.
- \State Call algorithm from Figure~\ref{HSA} with these times.
+ \State Call Algorithm \ref{HSA}.
\State Compute the new frequencies from the\newline\hspace*{3em}%
returned optimal scaling factors.
\State Set the new frequencies to nodes.
\label{dvfs}
\end{algorithm}
-\section{Experimental results}
-\label{sec.expe}
-To evaluate the efficiency and the overall energy consumption reduction of algorithm~(\ref{HSA}), it was applied to the NAS parallel benchmarks NPB v3.3
-\cite{44}. The experiments were executed on the simulator SimGrid/SMPI
-v3.10~\cite{casanova+giersch+legrand+al.2014.versatile} which offers easy tools to create a heterogeneous platform and run message passing applications over it. The heterogeneous platform that was used in the experiments, had one core per node because just one process was executed per node. The heterogeneous platform was composed of four types of nodes. Each type of nodes had different characteristics such as the maximum CPU frequency, the number of
-available frequencies and the computational power, see table
-(\ref{table:platform}). The characteristics of these different types of nodes are inspired from the specifications of real Intel processors. The heterogeneous platform had up to 144 nodes and had nodes from the four types in equal proportions, for example if a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the constructors of CPUs do not specify the dynamic and the static power of their CPUs, for each type of node they were chosen proportionally to its computing power (FLOPS). In the initial heterogeneous platform, while computing with highest frequency, each node consumed power proportional to its computing power which 80\% of it was dynamic power and the rest was 20\% was static power, the same assumption was made in \cite{45,3}. Finally, These nodes were connected via an ethernet network with 1 Gbit/s bandwidth.
-
-
-\begin{table}[htb]
- \caption{Heterogeneous nodes characteristics}
- % title of Table
+\subsection{The algorithm details}
+
+\textcolor{red}{Delete the subsection if there's only one.}
+
+In this section, the scaling factors selection algorithm for grids, algorithm~\ref{HSA}, is presented. It selects the vector of the frequency
+scaling factors that gives the best trade-off between minimizing the
+energy consumption and maximizing the performance of a message passing
+synchronous iterative application executed on a grid. It works
+online during the execution time of the iterative message passing program. It
+uses information gathered during the first iteration such as the computation
+time and the communication time in one iteration for each node. The algorithm is
+executed after the first iteration and returns a vector of optimal frequency
+scaling factors that satisfies the objective function (\ref{eq:max}). The
+program applies DVFS operations to change the frequencies of the CPUs according
+to the computed scaling factors. This algorithm is called just once during the
+execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
+scaling algorithm is called in the iterative MPI program.
+
+\begin{figure}[!t]
\centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Node &Simulated & Max & Min & Diff. & Dynamic & Static \\
- type &GFLOPS & Freq. & Freq. & Freq. & power & power \\
- & & GHz & GHz &GHz & & \\
- \hline
- 1 &40 & 2.5 & 1.2 & 0.1 & 20~w &4~w \\
- & & & & & & \\
- \hline
- 2 &50 & 2.66 & 1.6 & 0.133 & 25~w &5~w \\
- & & & & & & \\
- \hline
- 3 &60 & 2.9 & 1.2 & 0.1 & 30~w &6~w \\
- & & & & & & \\
- \hline
- 4 &70 & 3.4 & 1.6 & 0.133 & 35~w &7~w \\
- & & & & & & \\
- \hline
- \end{tabular}
- \label{table:platform}
-\end{table}
-
-
-%\subsection{Performance prediction verification}
-
-
-\subsection{The experimental results of the scaling algorithm}
-\label{sec.res}
+ \includegraphics[scale=0.45]{fig/init_freq}
+ \caption{Selecting the initial frequencies}
+ \label{fig:st_freq}
+\end{figure}
+Nodes from distinct clusters in a grid have different computing powers, thus
+while executing message passing iterative synchronous applications, fast nodes
+have to wait for the slower ones to finish their computations before being able
+to synchronously communicate with them as in Figure~\ref{fig:heter}. These
+periods are called idle or slack times. The algorithm takes into account this
+problem and tries to reduce these slack times when selecting the vector of the frequency
+scaling factors. At first, it selects initial frequency scaling factors
+that increase the execution times of fast nodes and minimize the differences
+between the computation times of fast and slow nodes. The value of the initial
+frequency scaling factor for each node is inversely proportional to its
+computation time that was gathered from the first iteration. These initial
+frequency scaling factors are computed as a ratio between the computation time
+of the slowest node and the computation time of the node $i$ as follows:
+\begin{equation}
+ \label{eq:Scp}
+ \Scp[ij] = \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]}
+\end{equation}
+Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the
+algorithm computes the initial frequencies for all nodes as a ratio between the
+maximum frequency of node $i$ and the computation scaling factor $\Scp[i]$ as
+follows:
+\begin{equation}
+ \label{eq:Fint}
+ F_{ij} = \frac{\Fmax[ij]}{\Scp[ij]},~{i=1,2,\dots,N},~{j=1,\dots,M}
+\end{equation}
+If the computed initial frequency for a node is not available in the gears of
+that node, it is replaced by the nearest available frequency. In
+Figure~\ref{fig:st_freq}, the nodes are sorted by their computing powers in
+ascending order and the frequencies of the faster nodes are scaled down
+according to the computed initial frequency scaling factors. The resulting new
+frequencies are highlighted in Figure~\ref{fig:st_freq}. This set of
+frequencies can be considered as a higher bound for the search space of the
+optimal vector of frequencies because selecting higher frequencies
+than the higher bound will not improve the performance of the application and it
+will increase its overall energy consumption. Therefore the algorithm that
+selects the frequency scaling factors starts the search method from these
+initial frequencies and takes a downward search direction toward lower
+frequencies until reaching the nodes' minimum frequencies or lower bounds. A node's frequency is considered its lower bound if the computed distance between the energy and performance at this frequency is less than zero.
+A negative distance means that the performance degradation ratio is higher than the energy saving ratio.
+In this situation, the algorithm must stop the downward search because it has reached the lower bound and it is useless to test the lower frequencies. Indeed, they will all give worse distances.
+
+Therefore, the algorithm iterates on all remaining frequencies, from the higher
+bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall
+energy consumption and performance and selects the optimal vector of the frequency scaling
+factors. At each iteration the algorithm determines the slowest node
+according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
+while it lowers the frequency of all other nodes by one gear. The new overall
+energy consumption and execution time are computed according to the new scaling
+factors. The optimal set of frequency scaling factors is the set that gives the
+highest distance according to the objective function (\ref{eq:max}).
+
+Figures~\ref{fig:r1} and \ref{fig:r2} illustrate the normalized performance and
+consumed energy for an application running on a homogeneous cluster and a
+ grid platform respectively while increasing the scaling factors. It can
+be noticed that in a homogeneous cluster the search for the optimal scaling
+factor should start from the maximum frequency because the performance and the
+consumed energy decrease from the beginning of the plot. On the other hand, in
+the grid platform the performance is maintained at the beginning of the
+plot even if the frequencies of the faster nodes decrease until the computing
+power of scaled down nodes are lower than the slowest node. In other words,
+until they reach the higher bound. It can also be noticed that the higher the
+difference between the faster nodes and the slower nodes is, the bigger the
+maximum distance between the energy curve and the performance curve is, which results in bigger energy savings.
-The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) and the benchmarks were executed with the three classes: A,B and C. However, due to the lack of space in this paper, only the results of the biggest class, C, are presented while being run on different number of nodes, ranging from 4 to 128 or 144 nodes depending on the benchmark being executed. Indeed, the benchmarks CG, MG, LU, EP and FT should be executed on $1, 2, 4, 8, 16, 32, 64, 128$ nodes. The other benchmarks such as BT and SP should be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
-
-
-\begin{table}[htb]
- \caption{Running NAS benchmarks on 4 nodes }
- % title of Table
- \centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Method & Execution & Energy & Energy & Performance & Distance \\
- name & time/s & consumption/J & saving\% & degradation\% & \\
- \hline
- CG & 64.64 & 3560.39 &34.16 &6.72 &27.44 \\
- \hline
- MG & 18.89 & 1074.87 &35.37 &4.34 &31.03 \\
- \hline
- EP &79.73 &5521.04 &26.83 &3.04 &23.79 \\
- \hline
- LU &308.65 &21126.00 &34.00 &6.16 &27.84 \\
- \hline
- BT &360.12 &21505.55 &35.36 &8.49 &26.87 \\
- \hline
- SP &234.24 &13572.16 &35.22 &5.70 &29.52 \\
- \hline
- FT &81.58 &4151.48 &35.58 &0.99 &34.59 \\
-\hline
- \end{tabular}
- \label{table:res_4n}
-\end{table}
+\section{Experimental results}
+\label{sec.expe}
+While in~\cite{mpi-energy2} the energy model and the scaling factors selection algorithm were applied to a heterogeneous cluster and evaluated over the SimGrid simulator~\cite{SimGrid.org},
+in this paper real experiments were conducted over the grid'5000 platform.
+
+\subsection{Grid'5000 architature and power consumption}
+\label{sec.grid5000}
+Grid'5000~\cite{grid5000} is a large-scale testbed that consists of ten sites distributed over all metropolitan France and Luxembourg. All the sites are connected together via a special long distance network called RENATER,
+which is the French National Telecommunication Network for Technology.
+Each site of the grid is composed of few heterogeneous
+computing clusters and each cluster contains many homogeneous nodes. In total,
+ grid'5000 has about one thousand heterogeneous nodes and eight thousand cores. In each site,
+the clusters and their nodes are connected via high speed local area networks.
+Two types of local networks are used, Ethernet or Infiniband networks which have different characteristics in terms of bandwidth and latency.
+
+Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture
+the power consumption for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ... For more details refer to
+\cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$,
+ firstly, the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $P\max[jx]$. The difference between the two measured power consumption represents the
+dynamic power consumption of that core with the maximum frequency, see figure(\ref{fig:power_cons}).
+
+\textcolor{red}{why maximum and minimum, change peak in the equation and the figure}
+
+The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
+\begin{equation}
+ \label{eq:pdyn}
+ \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (P\max[jx]) - \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
+\end{equation}
-\begin{table}[htb]
- \caption{Running NAS benchmarks on 8 and 9 nodes }
- % title of Table
- \centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Method & Execution & Energy & Energy & Performance & Distance \\
- name & time/s & consumption/J & saving\% & degradation\% & \\
- \hline
- CG &36.11 &3263.49 &31.25 &7.12 &24.13 \\
- \hline
- MG &8.99 &953.39 &33.78 &6.41 &27.37 \\
- \hline
- EP &40.39 &5652.81 &27.04 &0.49 &26.55 \\
- \hline
- LU &218.79 &36149.77 &28.23 &0.01 &28.22 \\
- \hline
- BT &166.89 &23207.42 &32.32 &7.89 &24.43 \\
- \hline
- SP &104.73 &18414.62 &24.73 &2.78 &21.95 \\
- \hline
- FT &51.10 &4913.26 &31.02 &2.54 &28.48 \\
-\hline
- \end{tabular}
- \label{table:res_8n}
-\end{table}
+where $\Pd[j]$ is the dynamic power consumption for one core of node $j$,
+$\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured peak power values,
+$\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured idle power values.
+Therefore, the dynamic power of one core is computed as the difference between the maximum
+measured value in peak powers vector and the minimum measured value in the idle powers vector.
-\begin{table}[htb]
- \caption{Running NAS benchmarks on 16 nodes }
- % title of Table
- \centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Method & Execution & Energy & Energy & Performance & Distance \\
- name & time/s & consumption/J & saving\% & degradation\% & \\
- \hline
- CG &31.74 &4373.90 &26.29 &9.57 &16.72 \\
- \hline
- MG &5.71 &1076.19 &32.49 &6.05 &26.44 \\
- \hline
- EP &20.11 &5638.49 &26.85 &0.56 &26.29 \\
- \hline
- LU &144.13 &42529.06 &28.80 &6.56 &22.24 \\
- \hline
- BT &97.29 &22813.86 &34.95 &5.80 &29.15 \\
- \hline
- SP &66.49 &20821.67 &22.49 &3.82 &18.67 \\
- \hline
- FT &37.01 &5505.60 &31.59 &6.48 &25.11 \\
-\hline
- \end{tabular}
- \label{table:res_16n}
-\end{table}
+On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that the static power represents a ratio of the dynamic power, the value of the static power is assumed as np[\%]{20} of dynamic power consumption of the core.
-\begin{table}[htb]
- \caption{Running NAS benchmarks on 32 and 36 nodes }
- % title of Table
- \centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Method & Execution & Energy & Energy & Performance & Distance \\
- name & time/s & consumption/J & saving\% & degradation\% & \\
- \hline
- CG &32.35 &6704.21 &16.15 &5.30 &10.85 \\
- \hline
- MG &4.30 &1355.58 &28.93 &8.85 &20.08 \\
- \hline
- EP &9.96 &5519.68 &26.98 &0.02 &26.96 \\
- \hline
- LU &99.93 &67463.43 &23.60 &2.45 &21.15 \\
- \hline
- BT &48.61 &23796.97 &34.62 &5.83 &28.79 \\
- \hline
- SP &46.01 &27007.43 &22.72 &3.45 &19.27 \\
- \hline
- FT &28.06 &7142.69 &23.09 &2.90 &20.19 \\
-\hline
- \end{tabular}
- \label{table:res_32n}
-\end{table}
+In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
-\begin{table}[htb]
- \caption{Running NAS benchmarks on 64 nodes }
- % title of Table
- \centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Method & Execution & Energy & Energy & Performance & Distance \\
- name & time/s & consumption/J & saving\% & degradation\% & \\
- \hline
- CG &46.65 &17521.83 &8.13 &1.68 &6.45 \\
- \hline
- MG &3.27 &1534.70 &29.27 &14.35 &14.92 \\
- \hline
- EP &5.05 &5471.1084 &27.12 &3.11 &24.01 \\
- \hline
- LU &73.92 &101339.16 &21.96 &3.67 &18.29 \\
- \hline
- BT &39.99 &27166.71 &32.02 &12.28 &19.74 \\
- \hline
- SP &52.00 &49099.28 &24.84 &0.03 &24.81 \\
- \hline
- FT &25.97 &10416.82 &20.15 &4.87 &15.28 \\
-\hline
- \end{tabular}
- \label{table:res_64n}
-\end{table}
+Four clusters from the two sites were selected in the experiments: one cluster from
+Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene,
+Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available
+frequency ranges and local network features: the bandwidth and the latency. Table \ref{table:grid5000} shows
+the details characteristics of these four clusters. Moreover, the dynamic powers were computed using the equation (\ref{eq:pdyn}) for all the nodes in the
+selected clusters and are presented in table \ref{table:grid5000}.
-\begin{table}[htb]
- \caption{Running NAS benchmarks on 128 and 144 nodes }
- % title of Table
- \centering
- \begin{tabular}{|*{7}{l|}}
- \hline
- Method & Execution & Energy & Energy & Performance & Distance \\
- name & time/s & consumption/J & saving\% & degradation\% & \\
- \hline
- CG &56.92 &41163.36 &4.00 &1.10 &2.90 \\
- \hline
- MG &3.55 &2843.33 &18.77 &10.38 &8.39 \\
- \hline
- EP &2.67 &5669.66 &27.09 &0.03 &27.06 \\
- \hline
- LU &51.23 &144471.90 &16.67 &2.36 &14.31 \\
- \hline
- BT &37.96 &44243.82 &23.18 &1.28 &21.90 \\
- \hline
- SP &64.53 &115409.71 &26.72 &0.05 &26.67 \\
- \hline
- FT &25.51 &18808.72 &12.85 &2.84 &10.01 \\
-\hline
- \end{tabular}
- \label{table:res_128n}
-\end{table}
-The overall energy consumption was computed for each instance according to the energy consumption model EQ(\ref{eq:energy}), with and without applying the algorithm. The execution time was also measured for all these experiments. Then, the energy saving and performance degradation percentages were computed for each instance.
-The results are presented in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). All these results are the average values from many experiments for energy savings and performance degradation.
-
-The tables show the experimental results for running the NAS parallel benchmarks on different number of nodes. The experiments show that the algorithm reduce significantly the energy consumption (up to 35\%) and tries to limit the performance degradation. They also show that the energy saving percentage is decreased when the number of the computing nodes is increased. This reduction is due to the increase of the communication times compared to the execution times when the benchmarks are run over a high number of nodes. Indeed, the benchmarks with the same class, C, are executed on different number of nodes, so the computation required for each iteration is divided by the number of computing nodes. On the other hand, more communications are required when increasing the number of nodes so the static energy is increased linearly according to the communication time and the dynamic power is less relevant in the overall energy consumption. Therefore, reducing the frequency with algorithm~(\ref{HSA}) have less effect in reducing the overall energy savings. It can also be noticed that for the benchmarks EP and SP that contain little or no communications, the energy savings are not significantly affected with the high number of nodes. No experiments were conducted using bigger classes such as D, because they require a lot of memory(more than 64GB) when being executed by the simulator on one machine.
-The maximum distance between the normalized energy curve and the normalized performance for each instance is also shown in the result tables. It is decreased in the same way as the energy saving percentage. The tables also show that the performance degradation percentage is not significantly increased when the number of computing nodes is increased because the computation times are small when compared to the communication times.
-
-\begin{figure}
+\begin{figure}[!t]
\centering
- \subfloat[Energy saving]{%
- \includegraphics[width=.2315\textwidth]{fig/energy}\label{fig:energy}}%
- \quad%
- \subfloat[Performance degradation ]{%
- \includegraphics[width=.2315\textwidth]{fig/per_deg}\label{fig:per_deg}}
- \label{fig:avg}
- \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
+ \includegraphics[scale=1]{fig/grid5000}
+ \caption{The selected two sites of grid'5000}
+ \label{fig:grid5000}
\end{figure}
-
- Plots (\ref{fig:energy} and \ref{fig:per_deg}) present the energy saving and performance degradation respectively for all the benchmarks according to the number of used
-nodes. As shown in the first plot, the energy saving percentages of the benchmarks MG, LU, BT and FT are decreased linearly when the the number of nodes is increased. While for the EP and SP benchmarks, the energy saving percentage is not affected by the increase of the number of computing nodes, because in these benchmarks there are no communications. Finally, the energy saving of the GC benchmark is significantly decreased when the number of nodes is increased because this benchmark has more communications than the others. The second plot shows that the performance degradation percentages of most of the benchmarks are decreased when they run on a big number of nodes because they spend more time communicating than computing, thus, scaling down the frequencies of some nodes have less effect on the performance.
+The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
+The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
+The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections.
-\subsection{The results for different power consumption scenarios}
-The results of the previous section were obtained while using processors that consume during computation an overall power which is 80\% composed of dynamic power and 20\% of static power. In this
-section, these ratios are changed and two new power scenarios are considered in order to evaluate how the proposed algorithm adapts itself according to the static and dynamic power values. The two new power scenarios are the following:
-\begin{itemize}
-\item 70\% dynamic power and 30\% static power
-\item 90\% dynamic power and 10\% static power
-\end{itemize}
-The NAS parallel benchmarks were executed again over processors that follow the the new power scenarios. The class C of each benchmark was run over 8 or 9 nodes and the results are presented in tables (\ref{table:res_s1} and \ref{table:res_s2}). These tables show that the energy saving percentage of the 70\%-30\% scenario is less for all benchmarks compared to the energy saving of the 90\%-10\% scenario. Indeed, in the latter more dynamic power is consumed when nodes are running on their maximum frequencies, thus, scaling down the frequency of the nodes results in higher energy savings than in the 70\%-30\% scenario. On the other hand, the performance degradation percentage is less in the 70\%-30\% scenario compared to the 90\%-10\% scenario. This is due to the higher static power percentage in the first scenario which makes it more relevant in the overall consumed energy. Indeed, the static energy is related to the execution time and if the performance is degraded the total consumed static energy is directly increased. Therefore, the proposed algorithm do not scales down much the frequencies of the nodes in order to limit the increase of the execution time and thus limiting the effect of the consumed static energy .
+\begin{figure}[!t]
+ \centering
+ \includegraphics[scale=0.6]{fig/power_consumption.pdf}
+ \caption{The power consumption by one core from Taurus cluster}
+ \label{fig:power_cons}
+\end{figure}
-The two new power scenarios are compared to the old one in figure (\ref{fig:sen_comp}). It shows the average of the performance degradation, the energy saving and the distances for all NAS benchmarks of class C running on 8 or 9 nodes. The comparison shows that the energy saving ratio is proportional to the dynamic power ratio: it is increased when applying the 90\%-10\% scenario because at maximum frequency the dynamic energy is the the most relevant in the overall consumed energy and can be reduced by lowering the frequency of some processors. On the other hand, the energy saving is decreased when the 70\%-30\% scenario is used because the dynamic energy is less relevant in the overall consumed energy and lowering the frequency do not returns big energy savings.
-Moreover, the average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). Since the proposed algorithm optimizes the energy consumption when using a higher ratio for dynamic power the algorithm selects bigger frequency scaling factors that result in more energy saving but less performance, for example see the figure (\ref{fig:scales_comp}). The opposite happens when using a higher ratio for static power, the algorithm proportionally selects smaller scaling values which results in less energy saving but less performance degradation.
- \begin{table}[htb]
- \caption{The results of 70\%-30\% powers scenario}
+
+\begin{table}[!t]
+ \caption{CPUs characteristics of the selected clusters}
% title of Table
\centering
- \begin{tabular}{|*{6}{l|}}
+ \begin{tabular}{|*{7}{c|}}
\hline
- Method & Energy & Energy & Performance & Distance \\
- name & consumption/J & saving\% & degradation\% & \\
+ Cluster & CPU & Max & Min & Diff. & no. of cores & dynamic power \\
+ Name & model & Freq. & Freq. & Freq. & per CPU & of one core \\
+ & & GHz & GHz & GHz & & \\
\hline
- CG &4144.21 &22.42 &7.72 &14.70 \\
- \hline
- MG &1133.23 &24.50 &5.34 &19.16 \\
- \hline
- EP &6170.30 &16.19 &0.02 &16.17 \\
- \hline
- LU &39477.28 &20.43 &0.07 &20.36 \\
+ Taurus & Intel & 2.3 & 1.2 & 0.1 & 6 & \np[W]{35} \\
+ & Xeon & & & & & \\
+ & E5-2630 & & & & & \\
\hline
- BT &26169.55 &25.34 &6.62 &18.71 \\
- \hline
- SP &19620.09 &19.32 &3.66 &15.66 \\
- \hline
- FT &6094.07 &23.17 &0.36 &22.81 \\
-\hline
- \end{tabular}
- \label{table:res_s1}
-\end{table}
-
-
-
-\begin{table}[htb]
- \caption{The results of 90\%-10\% powers scenario}
- % title of Table
- \centering
- \begin{tabular}{|*{6}{l|}}
+ Graphene & Intel & 2.53 & 1.2 & 0.133 & 4 & \np[W]{23} \\
+ & Xeon & & & & & \\
+ & X3440 & & & & & \\
\hline
- Method & Energy & Energy & Performance & Distance \\
- name & consumption/J & saving\% & degradation\% & \\
+ Griffon & Intel & 2.5 & 2 & 0.5 & 4 & \np[W]{46} \\
+ & Xeon & & & & & \\
+ & L5420 & & & & & \\
\hline
- CG &2812.38 &36.36 &6.80 &29.56 \\
- \hline
- MG &825.427 &38.35 &6.41 &31.94 \\
- \hline
- EP &5281.62 &35.02 &2.68 &32.34 \\
- \hline
- LU &31611.28 &39.15 &3.51 &35.64 \\
+ Graphite & Intel & 2 & 1.2 & 0.1 & 8 & \np[W]{35} \\
+ & Xeon & & & & & \\
+ & E5-2650 & & & & & \\
\hline
- BT &21296.46 &36.70 &6.60 &30.10 \\
- \hline
- SP &15183.42 &35.19 &11.76 &23.43 \\
- \hline
- FT &3856.54 &40.80 &5.67 &35.13 \\
-\hline
\end{tabular}
- \label{table:res_s2}
-\end{table}
+ \label{table:grid5000}
+\end{table}
-\begin{figure}
- \centering
- \subfloat[Comparison the average of the results on 8 nodes]{%
- \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
- \quad%
- \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
- \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
- \label{fig:comp}
- \caption{The comparison of the three power scenarios}
-\end{figure}
+\subsection{The experimental results of the scaling algorithm}
+\label{sec.res}
+
+\subsection{The experimental results of multi-cores clusters}
+\label{sec.res}
+
+\subsection{The results for different power consumption scenarios}
+\label{sec.compare}
+
+
+
+
+\subsection{The comparison of the proposed scaling algorithm }
+\label{sec.compare_EDP}
-\subsection{The verifications of the proposed method}
-\label{sec.verif}
-The precision of the proposed algorithm mainly depends on the execution time prediction model defined in EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}).
-The energy model is also significantly dependent on the execution time model because the static energy is linearly related the execution time and the dynamic energy is related to the computation time. So, all of the work presented in this paper is based on the execution time model. To verify this model, the predicted execution time was compared to the real execution time over Simgrid for all the NAS parallel benchmarks running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, the maximum normalized difference between the predicted execution time and the real execution time is equal to 0.03 for all the NAS benchmarks.
-Since the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small
-execution time: for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in table~(\ref{table:platform}), it
-takes on average \np[ms]{0.04} for 4 nodes and \np[ms]{0.15} on average for 144 nodes to compute the best scaling factors vector. The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number of iterations and $N$ is the number of computing nodes. The algorithm
-needs from 12 to 20 iterations to select the best vector of frequency scaling factors that gives the results of the section (\ref{sec.res}).
\section{Conclusion}
\label{sec.concl}
+
\section*{Acknowledgment}
+This work has been partially supported by the Labex ACTION project (contract
+``ANR-11-LABX-01-01''). Computations have been performed on the supercomputer
+facilities of the Mésocentre de calcul de Franche-Comté. As a PhD student,
+Mr. Ahmed Fanfakh, would like to thank the University of Babylon (Iraq) for
+supporting his work.
% trigger a \newpage just before the given reference
% number - used to balance the columns on the last page
%%% End:
% LocalWords: Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
-% LocalWords: CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
-% LocalWords: de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
-% LocalWords: Scp Fmax Fdiff SimGrid GFlops Xeon EP BT
+% LocalWords: CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
+% LocalWords: de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
+% LocalWords: Spiliopoulos scalability