]> AND Private Git Repository - mpi-energy2.git/blobdiff - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
About title.
[mpi-energy2.git] / Heter_paper.tex
index 7262696d4780b7ab299f91366cbe3ebc7ccd3e26..2f78db5cca9768e9b5adce2a1079de9039e3f041 100644 (file)
@@ -581,19 +581,39 @@ computing clusters and each cluster contains many homogeneous nodes. In total,
 the clusters and their nodes are connected via  high speed local area networks. 
 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
 
 the clusters and their nodes are connected via  high speed local area networks. 
 Two types of local networks are used, Ethernet or Infiniband networks which have  different characteristics in terms of bandwidth and latency.  
 
-Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. 
+Since grid'5000 is dedicated for testing, contrary to production grids it allows a user to deploy its own customized operating system on all the booked nodes. The user could have root rights and thus apply DVFS operations while executing a distributed application. Moreover, the grid'5000 testbed provides at some sites a power measurement tool to capture 
+the power consumption  for each node in those sites. The measured power is the overall consumed power by by all the components of a node at a given instant, such as CPU, hard drive, main-board, memory, ...  For more details refer to
+\cite{Energy_measurement}. To just measure the CPU power of one core in a node $j$, 
+ firstly,  the power consumed by the node while being idle at instant $y$, noted as $\Pidle[jy]$, was measured. Then, the power was measured while running a single thread benchmark with no communication (no idle time) over the same node with its CPU scaled to the maximum available frequency. The latter power measured at time $x$ with maximum frequency for one core of node $j$ is noted $P\max[jx]$. The difference between the two measured power consumption represents the 
+dynamic power consumption of that core with the maximum frequency, see  figure(\ref{fig:power_cons}). 
+
+\textcolor{red}{why maximum and minimum, change peak in the equation and the figure}
+
+The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
+\begin{equation}
+  \label{eq:pdyn}
+    \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (P\max[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
+\end{equation}
+
+where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
+$\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured peak power values, 
+$\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
+Therefore, the dynamic power of one core is computed as the difference between the maximum 
+measured value in peak powers vector and the minimum measured value in the idle powers vector.
+
+On the other hand, the static power consumption by one core is a part of the measured idle power consumption of the node. Since in grid'5000 there is no way to measure precisely the consumed static power and in~\cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy} it was assumed that  the static power  represents a ratio of the dynamic power, the value of the static power is assumed as  np[\%]{20} of dynamic power consumption of the core.
+
+In the experiments presented in the following sections, two sites of grid'5000 were used, Lyon and Nancy sites. These two sites have in total seven different clusters as in figure (\ref{fig:grid5000}).
+
+Four clusters from the two sites were selected in the experiments: one cluster from 
+Lyon's site, Taurus cluster, and three clusters from Nancy's site, Graphene, 
+Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while nodes from different clusters are heterogeneous in many aspects such as: computing power, power consumption, available 
+frequency ranges and local network features: the bandwidth and the latency.  Table \ref{table:grid5000} shows 
+the details characteristics of these four clusters. Moreover, the dynamic powers were computed  using the equation (\ref{eq:pdyn}) for all the nodes in the 
+selected clusters and are presented in table  \ref{table:grid5000}.
 
 
 
 
 
 
-we are interested  to run NAS parallel v3.3 \cite{NAS.Parallel.Benchmarks} over grid'5000.
-We are used seven benchmarks, CG, MG, EP, LU, BT, SP and FT. These benchmarks used seven different types of classes.
-These classes are S, W, A, B, C, D, E, where S represents the smaller problem size that used by benchmark and
-E is represents the biggest class. In this work, the class D is used for all benchmarks in all the experiments that will 
-be showed in the coming sections.
-Moreover, the NAS parallel benchmarks have different computations and communications ratios, then it is interested 
-to study their energy consumption and their performance on real testbed such as grid'5000.
-In this work, the NAS benchmarks are executed over two sites, Lyon and Nancy sites, of grid'5000.
-These two sites had seven different types of computing clusters as in figure (\ref{fig:grid5000}).
 
 \begin{figure}[!t]
   \centering
 
 \begin{figure}[!t]
   \centering
@@ -602,12 +622,22 @@ These two sites had seven different types of computing clusters as in figure (\r
   \label{fig:grid5000}
 \end{figure}
 
   \label{fig:grid5000}
 \end{figure}
 
-Four clusters from the two sites are selected in the experiments, one cluster from 
-Lyon site, Taurus cluster, and three clusters from Nancy site where are Graphene, 
-Griffon and Graphite. Each one of these clusters has homogeneous nodes inside, while their nodes are
-different from the nodes of other clusters in many aspects such as: computing power, power consumption, available 
-frequencies ranges and the network features, the bandwidth and the latency. The Table \ref{table:grid5000} shows 
-the details characteristics of these four clusters.
+
+The energy model and the scaling factors selection algorithm were applied to the NAS parallel benchmarks v3.3 \cite{NAS.Parallel.Benchmarks} and evaluated over grid'5000.
+The benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and FT. These applications have different computations and communications ratios and strategies which make them good testbed applications to evaluate the proposed algorithm and energy model.
+The benchmarks have seven different classes, S, W, A, B, C, D and E, that represent the size of the problem that the method solves. In this work, the class D was used for all benchmarks in all the experiments presented in the next sections. 
+
+
+
+
+\begin{figure}[!t]
+  \centering
+  \includegraphics[scale=0.6]{fig/power_consumption.pdf}
+  \caption{The power consumption by one core from Taurus cluster}
+  \label{fig:power_cons}
+\end{figure}
+
+
 
   
 \begin{table}[!t]
 
   
 \begin{table}[!t]
@@ -640,44 +670,7 @@ the details characteristics of these four clusters.
   \label{table:grid5000}
 \end{table} 
 
   \label{table:grid5000}
 \end{table} 
 
-The grid'5000 testbed provided some monitoring and measurements features to captured 
-the power consumption values for each node in any cluster of Lyon and Nancy sites. 
-The power consumed for each node from the selected four clusters is measured. 
-While the power consumed by any computing node is a collection of the powers  consumed by 
-hard drive, main-board, memory and node's computing cores, for more detail refer to
-\cite{Energy_measurement}. Therefore, the dynamic power consumed
-by one core is not allowed to measured alone. To overcome this problem, firstly, 
-we measured the power consumed by one node when there is no computation, when 
-the CPU is in the idle state. The second step, we run EP benchmark, there is no communications 
-in this benchmarks, over one core with maximum frequency of the desired node and 
-capturing the power consumed by a node, this representing the peak power of the node with one core.  
-The difference between the peak power  and the idle power representing the 
-dynamic power consumption of that core with maximum frequency, for example see figure(\ref{fig:power_cons}). 
-The $\Ppeak[jx]$ is the peak power value in time $x$ with maximum frequency for one core of node $j$, 
-and $\Pidle[jy]$ is the idle power value in time $y$ for the one  core of the node $j$ . 
-The dynamic power $\Pd[j]$ is computed as in equation (\ref{eq:pdyn})
-\begin{equation}
-  \label{eq:pdyn}
-    \Pd[j] = \max_{x=\beta_1,\dots \beta_2} (\Ppeak[jx])  -  \min_{y=\Theta_1,\dots \Theta_2} (\Pidle[jy])
-\end{equation}
 
 
-where $\Pd[j]$ is the dynamic power consumption for one core of node $j$, 
-$\lbrace \beta_1,\beta_2 \rbrace$ is the time interval for the measured peak power values, 
-$\lbrace\Theta_1,\Theta_2\rbrace$ is the time interval for the measured  idle power values.
-Therefore, the dynamic power of one core is computed as the difference between the maximum 
-measured value in peak powers vector and the minimum measured value in the idle powers vector.
-We are computed the dynamic powers, using the equation (\ref{eq:pdyn}), for all nodes in the 
-selected clusters, which is recorded in table  \ref{table:grid5000}.
-On the other side, the static power consumption by one core is embedded with whole idle power consumption of the node.
-Indeed, the static power is represents as ratio from  dynamic power. So, we supposed  
-the static power consumption represented  as \np[\%]{20} of dynamic power consumption of the core, 
-the same assumption was made in \cite{Our_first_paper,pdsec2015,Rauber_Analytical.Modeling.for.Energy}.
-\begin{figure}[!t]
-  \centering
-  \includegraphics[scale=0.6]{fig/power_consumption.pdf}
-  \caption{The power consumption by one core from Taurus cluster}
-  \label{fig:power_cons}
-\end{figure}
 
 
 \subsection{The experimental results of the scaling algorithm}
 
 
 \subsection{The experimental results of the scaling algorithm}