+The results of the previous section were obtained while using processors that
+consume during computation an overall power which is \np[\%]{80} composed of
+dynamic power and of \np[\%]{20} of static power. In this section, these ratios
+are changed and two new power scenarios are considered in order to evaluate how
+the proposed algorithm adapts itself according to the static and dynamic power
+values. The two new power scenarios are the following:
+
+\begin{itemize}
+\item \np[\%]{70} of dynamic power and \np[\%]{30} of static power
+\item \np[\%]{90} of dynamic power and \np[\%]{10} of static power
+\end{itemize}
+
+The NAS parallel benchmarks were executed again over processors that follow the
+new power scenarios. The class C of each benchmark was run over 8 or 9 nodes
+and the results are presented in Tables~\ref{table:res_s1} and
+\ref{table:res_s2}. These tables show that the energy saving percentage of the
+\np[\%]{70}-\np[\%]{30} scenario is smaller for all benchmarks compared to the
+energy saving of the \np[\%]{90}-\np[\%]{10} scenario. Indeed, in the latter
+more dynamic power is consumed when nodes are running on their maximum
+frequencies, thus, scaling down the frequency of the nodes results in higher
+energy savings than in the \np[\%]{70}-\np[\%]{30} scenario. On the other hand,
+the performance degradation percentage is smaller in the \np[\%]{70}-\np[\%]{30}
+scenario compared to the \np[\%]{90}-\np[\%]{10} scenario. This is due to the
+higher static power percentage in the first scenario which makes it more
+relevant in the overall consumed energy. Indeed, the static energy is related
+to the execution time and if the performance is degraded the amount of consumed
+static energy directly increases. Therefore, the proposed algorithm does not
+really significantly scale down much the frequencies of the nodes in order to
+limit the increase of the execution time and thus limiting the effect of the
+consumed static energy.
+
+Both new power scenarios are compared to the old one in
+Figure~\ref{fig:sen_comp}. It shows the average of the performance degradation,
+the energy saving and the distances for all NAS benchmarks of class C running on
+8 or 9 nodes. The comparison shows that the energy saving ratio is proportional
+to the dynamic power ratio: it is increased when applying the
+\np[\%]{90}-\np[\%]{10} scenario because at maximum frequency the dynamic energy
+is the most relevant in the overall consumed energy and can be reduced by
+lowering the frequency of some processors. On the other hand, the energy saving
+decreases when the \np[\%]{70}-\np[\%]{30} scenario is used because the dynamic
+energy is less relevant in the overall consumed energy and lowering the
+frequency does not return big energy savings. Moreover, the average of the
+performance degradation is decreased when using a higher ratio for static power
+(e.g. \np[\%]{70}-\np[\%]{30} scenario and \np[\%]{80}-\np[\%]{20}
+scenario). Since the proposed algorithm optimizes the energy consumption when
+using a higher ratio for dynamic power the algorithm selects bigger frequency
+scaling factors that result in more energy saving but less performance, for
+example see Figure~\ref{fig:scales_comp}. The opposite happens when using a
+higher ratio for static power, the algorithm proportionally selects smaller
+scaling values which result in less energy saving but also less performance
+degradation.
+
+\begin{table}[!t]
+ \caption{The results of the \np[\%]{70}-\np[\%]{30} power scenario}
+ % title of Table
+ \centering
+ \begin{tabular}{|*{6}{r|}}
+ \hline
+ Program & Energy & Energy & Performance & Distance \\
+ name & consumption/J & saving\% & degradation\% & \\
+ \hline
+ CG & 4144.21 & 22.42 & 7.72 & 14.70 \\
+ \hline
+ MG & 1133.23 & 24.50 & 5.34 & 19.16 \\
+ \hline
+ EP & 6170.30 & 16.19 & 0.02 & 16.17 \\
+ \hline
+ LU & 39477.28 & 20.43 & 0.07 & 20.36 \\
+ \hline
+ BT & 26169.55 & 25.34 & 6.62 & 18.71 \\
+ \hline
+ SP & 19620.09 & 19.32 & 3.66 & 15.66 \\
+ \hline
+ FT & 6094.07 & 23.17 & 0.36 & 22.81 \\
+ \hline
+ \end{tabular}
+ \label{table:res_s1}
+\end{table}
+
+\begin{table}[!t]
+ \caption{The results of the \np[\%]{90}-\np[\%]{10} power scenario}
+ % title of Table
+ \centering
+ \begin{tabular}{|*{6}{r|}}
+ \hline
+ Program & Energy & Energy & Performance & Distance \\
+ name & consumption/J & saving\% & degradation\% & \\
+ \hline
+ CG & 2812.38 & 36.36 & 6.80 & 29.56 \\
+ \hline
+ MG & 825.43 & 38.35 & 6.41 & 31.94 \\
+ \hline
+ EP & 5281.62 & 35.02 & 2.68 & 32.34 \\
+ \hline
+ LU & 31611.28 & 39.15 & 3.51 & 35.64 \\
+ \hline
+ BT & 21296.46 & 36.70 & 6.60 & 30.10 \\
+ \hline
+ SP & 15183.42 & 35.19 & 11.76 & 23.43 \\
+ \hline
+ FT & 3856.54 & 40.80 & 5.67 & 35.13 \\
+ \hline
+ \end{tabular}
+ \label{table:res_s2}
+\end{table}
+
+\begin{table}[!t]
+ \caption{Comparing the proposed algorithm}
+ \centering
+ \begin{tabular}{|*{7}{r|}}
+ \hline
+ Program & \multicolumn{2}{c|}{Energy saving \%}
+ & \multicolumn{2}{c|}{Perf. degradation \%}
+ & \multicolumn{2}{c|}{Distance} \\
+ \cline{2-7}
+ name & EDP & MaxDist & EDP & MaxDist & EDP & MaxDist \\
+ \hline
+ CG & 27.58 & 31.25 & 5.82 & 7.12 & 21.76 & 24.13 \\
+ \hline
+ MG & 29.49 & 33.78 & 3.74 & 6.41 & 25.75 & 27.37 \\
+ \hline
+ LU & 19.55 & 28.33 & 0.00 & 0.01 & 19.55 & 28.22 \\
+ \hline
+ EP & 28.40 & 27.04 & 4.29 & 0.49 & 24.11 & 26.55 \\
+ \hline
+ BT & 27.68 & 32.32 & 6.45 & 7.87 & 21.23 & 24.43 \\
+ \hline
+ SP & 20.52 & 24.73 & 5.21 & 2.78 & 15.31 & 21.95 \\
+ \hline
+ FT & 27.03 & 31.02 & 2.75 & 2.54 & 24.28 & 28.48 \\
+ \hline
+ \end{tabular}
+ \label{table:compare_EDP}
+\end{table}
+
+\begin{figure}[!t]
+ \centering
+ \subfloat[Comparison between the results on 8 nodes]{%
+ \includegraphics[width=.33\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%