]> AND Private Git Repository - mpi-energy2.git/blobdiff - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
index 5ef27298690893c35cdb23d425ac60510eec3e40..a72c5530e965cdaa7acbf261f00f1b1be5708e9c 100644 (file)
 
 
 
-\title{Optimizing Energy Consumption with DVFS for Message \\
-         Passing Applications \textcolor{blue}{with iterations} on \\
-                    Grid Architectures} 
+\title{Optimizing the Energy Consumption \\ 
+of Message Passing Applications with Iterations \\ 
+Executed over Grids} 
   
 
 
@@ -143,10 +143,10 @@ scaling (DVFS) is one of them. It can be used to reduce the power consumption of
   In this paper, a new online frequency selecting algorithm for grids, composed of heterogeneous clusters, is presented.  
   It selects the frequencies and tries to give the best
   trade-off between energy saving and performance degradation, for each node
-  computing the message passing  application \textcolor{blue}{with iterations}
+  computing the message passing  application with iterations
   The algorithm has a small
   overhead and works without training or profiling. It uses a new energy model
-  for message passing  applications \textcolor{blue}{with iterations} running on a  grid. 
+  for message passing  applications with iterations running on a  grid. 
   The proposed algorithm is evaluated on a real grid, the Grid'5000 platform, while
   running the NAS parallel benchmarks.  The experiments on 16 nodes, distributed on three clusters, show that it reduces  on average the
   energy consumption  by \np[\%]{30} while  the performance  is on average only degraded
@@ -192,7 +192,7 @@ This heterogeneous platform executes more than 7 GFlops per watt while consuming
 50.32 kilowatts.
 
 Besides platform improvements, there are many software and hardware techniques
-to lower the energy consumption of these platforms, such as DVFS, scheduling \textcolor{blue}{and other techniques}.
+to lower the energy consumption of these platforms, such as DVFS, scheduling and other techniques.
  DVFS is a widely used process to reduce the energy consumption of a
 processor by lowering its frequency
 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
@@ -1229,8 +1229,8 @@ The experimental results, the energy saving, performance degradation and trade-o
 presented in  Figures~\ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively.
 
 As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios. 
-The proposed algorithm gives better results than the EDP method because it 
-maximizes the energy saving and the performance at the same time. 
+The proposed algorithm gives better results than the EDP method because the former selects the set of frequencies that  
+gives the best tradeoff between energy saving and performance. 
 Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
 Whereas, the EDP algorithm gives sometimes negative trade-off values for some benchmarks in the two sites scenarios.
 These negative trade-off values mean that the performance degradation percentage is higher than the energy saving percentage.