-\title{Optimizing Energy Consumption with DVFS for Message \\
- Passing Applications \textcolor{blue}{with iterations} on \\
- Grid Architectures}
+\title{Optimizing the Energy Consumption \\
+of Message Passing Applications with Iterations \\
+Executed over Grids}
In this paper, a new online frequency selecting algorithm for grids, composed of heterogeneous clusters, is presented.
It selects the frequencies and tries to give the best
trade-off between energy saving and performance degradation, for each node
- computing the message passing application \textcolor{blue}{with iterations}.
+ computing the message passing application with iterations.
The algorithm has a small
overhead and works without training or profiling. It uses a new energy model
- for message passing applications \textcolor{blue}{with iterations} running on a grid.
+ for message passing applications with iterations running on a grid.
The proposed algorithm is evaluated on a real grid, the Grid'5000 platform, while
running the NAS parallel benchmarks. The experiments on 16 nodes, distributed on three clusters, show that it reduces on average the
energy consumption by \np[\%]{30} while the performance is on average only degraded
50.32 kilowatts.
Besides platform improvements, there are many software and hardware techniques
-to lower the energy consumption of these platforms, such as DVFS, scheduling \textcolor{blue}{and other techniques}.
+to lower the energy consumption of these platforms, such as DVFS, scheduling and other techniques.
DVFS is a widely used process to reduce the energy consumption of a
processor by lowering its frequency
\cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
presented in Figures~\ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively.
As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios.
-The proposed algorithm gives better results than the EDP method because it
-maximizes the energy saving and the performance at the same time.
+The proposed algorithm gives better results than the EDP method because the former selects the set of frequencies that
+gives the best tradeoff between energy saving and performance.
Moreover, the proposed scaling algorithm gives the same weight for these two metrics.
Whereas, the EDP algorithm gives sometimes negative trade-off values for some benchmarks in the two sites scenarios.
These negative trade-off values mean that the performance degradation percentage is higher than the energy saving percentage.