-Energy reduction process for a high performance clusters recently performed using dynamic voltage and frequency scaling (DVFS) technique. DVFS is a technique enabled in a modern processors to scaled down both of the voltage and the frequency of the CPU while it is in the computing mode to reduce the energy consumption. DVFS is also allowed in the graphical processors GPUs, to achieved the same goal. Applying DVFS has a dramatical side effect if it is applied to minimum levels to gain more energy reduction, producing a high percentage of performance degradations for the parallel applications. Many researchers used different strategies to solve this nonlinear problem for example in~\cite{19,42}, their methods add big overheads to the algorithm to select the
-suitable frequency. In this paper we present a method to find the optimal
-set of frequency scaling factors for a heterogeneous cluster to simultaneously optimize both the energy and the execution time without adding a big overhead.
-This work is developed from our previous work of a homogeneous cluster~\cite{45}. Therefore we are interested to present some works that concerned the heterogeneous clusters enabled DVFS. In general, the heterogeneous cluster works fall into two categorizes: GPUs-CPUs heterogeneous clusters and CPUs-CPUs heterogeneous clusters. In GPUs-CPUs heterogeneous clusters some parallel tasks executed on a GPUs and the others executed on a CPUs. As an example of this works, Luley et al.~\cite{51}, proposed a heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal is to determined the energy efficiency as a function of performance per watt, the best tradeoff is done when the performance per watt function is maximized. In the work of Kia Ma et al.~\cite{49}, They developed a scheduling algorithm to distributed different workloads proportional to the computing power of the node to be executed on a CPU or a GPU, emphasize all tasks must be finished in the same time.
-Recently, Rong et al.~\cite{50}, Their study explain that a heterogeneous clusters enabled DVFS using GPUs and CPUs gave better energy and performance efficiency
-than other clusters composed of only CPUs. The CPUs-CPUs heterogeneous clusters consist of number of computing nodes all of the type CPU. Our work in this paper can be classified to this type of the clusters. As an example of this works see Naveen et al.~\cite{52} work, They developed a policy to dynamically assigned the frequency to a heterogeneous cluster. The goal is to minimizing a fixed metric of $energy*delay^2$. Where our proposed method is automatically optimized the relation between the energy and the delay of the iterative applications. Other works such as Lizhe et al.~\cite{53}, their algorithm divided the executed tasks into two types: the critical and non critical tasks. The algorithm scaled down the frequency of the non critical tasks as function to the amount of the slack and communication times that have with maximum of performance degradation percentage of 10\%. In our method there is no fixed bounds for performance degradation percentage and the bound is dynamically computed according to the energy and the performance tradeoff relation of the executed application.
-There are some approaches used a heterogeneous cluster composed from two different types of Intel and AMD processors such as~\cite{54} and \cite{55}, they predicated both the energy and the performance for each frequency gear, then the algorithm selected the best gear that gave the best tradeoff. In contrast our algorithm works over a heterogeneous platform composed of four different types of processors. Others approaches such as \cite{56} and \cite{57}, they are selected the best frequencies for a specified heterogeneous clusters offline using some heuristic methods. While our proposed algorithm works online during the execution time of iterative application. Greedy dynamic approach used by Chen et al.~\cite{58}, minimized the power consumption of a heterogeneous severs with time/space complexity, this approach had considerable overhead. In our proposed scaling algorithm has very small overhead and it is works without any previous analysis for the application time complexity.
+DVFS is a technique used in modern processors to scale down both the voltage and
+the frequency of the CPU while computing, in order to reduce the energy
+consumption of the processor. DVFS is also allowed in GPUs to achieve the same
+goal. Reducing the frequency of a processor lowers its number of FLOPS and might
+degrade the performance of the application running on that processor, especially
+if it is compute bound. Therefore selecting the appropriate frequency for a
+processor to satisfy some objectives while taking into account all the
+constraints, is not a trivial operation. Many researchers used different
+strategies to tackle this problem. Some of them developed online methods that
+compute the new frequency while executing the application, such
+as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
+Others used offline methods that might need to run the application and profile
+it before selecting the new frequency, such
+as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
+The methods could be heuristics, exact or brute force methods that satisfy
+varied objectives such as energy reduction or performance. They also could be
+adapted to the execution's environment and the type of the application such as
+sequential, parallel or distributed architecture, homogeneous or heterogeneous
+platform, synchronous or asynchronous application, \dots{}
+
+In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
+Some works have already been done for such platforms and they can be classified into two types of heterogeneous platforms:
+\begin{itemize}
+
+\item the platform is composed of homogeneous GPUs and homogeneous CPUs.
+\item the platform is only composed of heterogeneous CPUs.
+
+\end{itemize}
+
+For the first type of platform, the computing intensive parallel tasks are
+executed on the GPUs and the rest are executed on the CPUs. Luley et
+al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
+heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
+goal was to maximize the energy efficiency of the platform during computation by
+maximizing the number of FLOPS per watt generated.
+In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
+al. developed a scheduling algorithm that distributes workloads proportional to
+the computing power of the nodes which could be a GPU or a CPU. All the tasks
+must be completed at the same time. In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
+Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
+DVFS gave better energy and performance efficiency than other clusters only
+composed of CPUs.
+
+The work presented in this paper concerns the second type of platform, with
+heterogeneous CPUs. Many methods were conceived to reduce the energy
+consumption of this type of platform. Naveen et
+al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
+minimizes the value of $energy\cdot delay^2$ (the delay is the sum of slack
+times that happen during synchronous communications) by dynamically assigning
+new frequencies to the CPUs of the heterogeneous cluster. Lizhe et
+al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed an algorithm
+that divides the executed tasks into two types: the critical and non critical
+tasks. The algorithm scales down the frequency of non critical tasks
+proportionally to their slack and communication times while limiting the
+performance degradation percentage to less than
+10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
+heterogeneous cluster composed of two types of Intel and AMD processors. They
+use a gradient method to predict the impact of DVFS operations on performance.
+In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
+\cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
+frequencies for a specified heterogeneous cluster are selected offline using
+some heuristic. Chen et
+al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
+programming approach to minimize the power consumption of heterogeneous servers
+while respecting given time constraints. This approach had considerable
+overhead. In contrast to the above described papers, this paper presents the
+following contributions :
+\begin{enumerate}
+\item two new energy and performance models for message passing iterative synchronous applications running over
+ a heterogeneous platform. Both models take into account communication and slack times. The models can predict the required energy and the execution time of the application.
+
+\item a new online frequency selecting algorithm for heterogeneous platforms. The algorithm has a very small
+ overhead and does not need any training or profiling. It uses a new optimization function which simultaneously maximizes the performance and minimizes the energy consumption of a message passing iterative synchronous application.
+
+\end{enumerate}