]> AND Private Git Repository - mpi-energy2.git/blobdiff - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Use abbreviations for months in bib file.
[mpi-energy2.git] / Heter_paper.tex
index dc87dc86b45aeef4d6aa99710c73df94ed429578..c48c9275d34035f90937113f3f9788eef2e6332b 100644 (file)
 \newcommand{\JC}[2][inline]{%
   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
 
 \newcommand{\JC}[2][inline]{%
   \todo[color=red!10,#1]{\sffamily\textbf{JC:} #2}\xspace}
 
-\newcommand{\Xsub}[2]{\ensuremath{#1_\textit{#2}}}
+\newcommand{\Xsub}[2]{{\ensuremath{#1_\mathit{#2}}}}
 
 
-\newcommand{\Dist}{\textit{Dist}}
+\newcommand{\CL}{\Xsub{C}{L}}
+\newcommand{\Dist}{\mathit{Dist}}
+\newcommand{\EdNew}{\Xsub{E}{dNew}}
 \newcommand{\Eind}{\Xsub{E}{ind}}
 \newcommand{\Enorm}{\Xsub{E}{Norm}}
 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
 \newcommand{\Eind}{\Xsub{E}{ind}}
 \newcommand{\Enorm}{\Xsub{E}{Norm}}
 \newcommand{\Eoriginal}{\Xsub{E}{Original}}
 \newcommand{\Ereduced}{\Xsub{E}{Reduced}}
+\newcommand{\Es}{\Xsub{E}{S}}
 \newcommand{\Fdiff}{\Xsub{F}{diff}}
 \newcommand{\Fmax}{\Xsub{F}{max}}
 \newcommand{\Fnew}{\Xsub{F}{new}}
 \newcommand{\Ileak}{\Xsub{I}{leak}}
 \newcommand{\Kdesign}{\Xsub{K}{design}}
 \newcommand{\Fdiff}{\Xsub{F}{diff}}
 \newcommand{\Fmax}{\Xsub{F}{max}}
 \newcommand{\Fnew}{\Xsub{F}{new}}
 \newcommand{\Ileak}{\Xsub{I}{leak}}
 \newcommand{\Kdesign}{\Xsub{K}{design}}
-\newcommand{\MaxDist}{\textit{Max Dist}}
+\newcommand{\MaxDist}{\mathit{Max}\Dist}
+\newcommand{\MinTcm}{\mathit{Min}\Tcm}
 \newcommand{\Ntrans}{\Xsub{N}{trans}}
 \newcommand{\Ntrans}{\Xsub{N}{trans}}
-\newcommand{\Pdyn}{\Xsub{P}{dyn}}
-\newcommand{\PnormInv}{\Xsub{P}{NormInv}}
+\newcommand{\PdNew}{\Xsub{P}{dNew}}
+\newcommand{\PdOld}{\Xsub{P}{dOld}}
+%\newcommand{\Pdyn}{\Xsub{P}{dyn}}
+\newcommand{\Pd}{\Xsub{P}{d}}
+%\newcommand{\PnormInv}{\Xsub{P}{NormInv}}
 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
 \newcommand{\Pnorm}{\Xsub{P}{Norm}}
-\newcommand{\Tnorm}{\Xsub{T}{Norm}}
-\newcommand{\Pstates}{\Xsub{P}{states}}
-\newcommand{\Pstatic}{\Xsub{P}{static}}
+%\newcommand{\Pstates}{\Xsub{P}{states}}
+%\newcommand{\Pstatic}{\Xsub{P}{static}}
+\newcommand{\Ps}{\Xsub{P}{s}}
+\newcommand{\Scp}{\Xsub{S}{cp}}
 \newcommand{\Sopt}{\Xsub{S}{opt}}
 \newcommand{\Sopt}{\Xsub{S}{opt}}
-\newcommand{\Tcomp}{\Xsub{T}{comp}}
-\newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
-\newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
-\newcommand{\Tmax}{\Xsub{T}{max}}
+\newcommand{\Tcm}{\Xsub{T}{cm}}
+%\newcommand{\Tcomp}{\Xsub{T}{comp}}
+\newcommand{\TcpOld}{\Xsub{T}{cpOld}}
+\newcommand{\Tcp}{\Xsub{T}{cp}}
+%\newcommand{\TmaxCommOld}{\Xsub{T}{Max Comm Old}}
+%\newcommand{\TmaxCompOld}{\Xsub{T}{Max Comp Old}}
+%\newcommand{\Tmax}{\Xsub{T}{max}}
 \newcommand{\Tnew}{\Xsub{T}{New}}
 \newcommand{\Tnew}{\Xsub{T}{New}}
+%\newcommand{\Tnorm}{\Xsub{T}{Norm}}
 \newcommand{\Told}{\Xsub{T}{Old}} 
 \newcommand{\Told}{\Xsub{T}{Old}} 
+
 \begin{document} 
 
 \title{Energy Consumption Reduction for Message Passing Iterative  Applications in Heterogeneous Architecture Using DVFS}
 \begin{document} 
 
 \title{Energy Consumption Reduction for Message Passing Iterative  Applications in Heterogeneous Architecture Using DVFS}
@@ -118,7 +131,7 @@ This heterogeneous platform executes more than 5 GFLOPS per watt while consuming
 
 Besides platform  improvements, there are many software  and hardware techniques
 to lower  the energy consumption of  these platforms, such  as scheduling, DVFS,
 
 Besides platform  improvements, there are many software  and hardware techniques
 to lower  the energy consumption of  these platforms, such  as scheduling, DVFS,
-...   DVFS is  a  widely used  process to  reduce  the energy  consumption of  a
+\dots{}  DVFS is a widely used process to reduce the energy consumption of a
 processor            by             lowering            its            frequency
 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
 the number of FLOPS executed by the processor which might increase the execution
 processor            by             lowering            its            frequency
 \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
 the number of FLOPS executed by the processor which might increase the execution
@@ -151,24 +164,24 @@ Finally, in Section~\ref{sec.concl} the paper ends with a summary and some futur
 \section{Related works}
 \label{sec.relwork}
 DVFS is a technique used in modern processors to scale down both the voltage and
 \section{Related works}
 \label{sec.relwork}
 DVFS is a technique used in modern processors to scale down both the voltage and
-the  frequency  of the  CPU  while  computing, in  order  to  reduce the  energy
-consumption of  the processor. DVFS is also  allowed in  GPUs  to achieve the
-same goal. Reducing the frequency of  a processor lowers its number of FLOPS and
-might  degrade the  performance of  the application  running on  that processor,
-especially if it is compute bound. Therefore selecting the appropriate frequency
-for a processor to satisfy some objectives while taking into account all the
-constraints,  is  not a  trivial  operation.   Many  researchers used  different
-strategies to  tackle this problem. Some  of them developed  online methods that
-compute   the  new   frequency  while   executing  the   application,   such  as
-~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}. Others
-used  offline methods  that might  need to  run the  application and  profile it
-before       selecting       the        new       frequency,       such       as
-~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}. The
-methods could  be heuristics, exact or  brute force methods  that satisfy varied
-objectives such as  energy reduction or performance. They  also could be adapted
-to  the  execution's  environment  and  the  type of  the  application  such  as
-sequential, parallel  or distributed architecture,  homogeneous or heterogeneous
-platform, synchronous or asynchronous application, ...
+the frequency of the CPU while computing, in order to reduce the energy
+consumption of the processor. DVFS is also allowed in GPUs to achieve the same
+goal. Reducing the frequency of a processor lowers its number of FLOPS and might
+degrade the performance of the application running on that processor, especially
+if it is compute bound. Therefore selecting the appropriate frequency for a
+processor to satisfy some objectives while taking into account all the
+constraints, is not a trivial operation.  Many researchers used different
+strategies to tackle this problem. Some of them developed online methods that
+compute the new frequency while executing the application, such
+as~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}.
+Others used offline methods that might need to run the application and profile
+it before selecting the new frequency, such
+as~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}.
+The methods could be heuristics, exact or brute force methods that satisfy
+varied objectives such as energy reduction or performance. They also could be
+adapted to the execution's environment and the type of the application such as
+sequential, parallel or distributed architecture, homogeneous or heterogeneous
+platform, synchronous or asynchronous application, \dots{}
 
 In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
 Some works have already been done for such platforms and they can be classified into two types of heterogeneous platforms: 
 
 In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
 Some works have already been done for such platforms and they can be classified into two types of heterogeneous platforms: 
@@ -179,30 +192,44 @@ Some works have already been done for such platforms and they can be classified
 
 \end{itemize}
 
 
 \end{itemize}
 
-For the first type of platform, the computing intensive parallel tasks are executed on the  GPUs and the rest are executed 
-on the CPUs.  Luley et al.
-~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed  a heterogeneous 
-cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main goal was to maximize the 
-energy efficiency of the platform during computation by maximizing the number of FLOPS per watt generated. 
-In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et al. developed a scheduling 
-algorithm that distributes  workloads proportional to the computing power of the nodes which could be a GPU or a CPU. All the tasks must be completed at the same time.
-In~\cite{Rong_Effects.of.DVFS.on.K20.GPU}, Rong et al. showed that 
-a heterogeneous (GPUs and CPUs) cluster that enables DVFS gave better energy and performance 
-efficiency than other clusters only composed of  CPUs.
+For the first type of platform, the computing intensive parallel tasks are
+executed on the GPUs and the rest are executed on the CPUs.  Luley et
+al.~\cite{Luley_Energy.efficiency.evaluation.and.benchmarking}, proposed a
+heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA GPUs. Their main
+goal was to maximize the energy efficiency of the platform during computation by
+maximizing the number of FLOPS per watt generated.
+In~\cite{KaiMa_Holistic.Approach.to.Energy.Efficiency.in.GPU-CPU}, Kai Ma et
+al. developed a scheduling algorithm that distributes workloads proportional to
+the computing power of the nodes which could be a GPU or a CPU. All the tasks
+must be completed at the same time.  In~\cite{Rong_Effects.of.DVFS.on.K20.GPU},
+Rong et al. showed that a heterogeneous (GPUs and CPUs) cluster that enables
+DVFS gave better energy and performance efficiency than other clusters only
+composed of CPUs.
  
  
-The work presented in this paper concerns the second type of platform, with heterogeneous CPUs.
-Many methods were conceived to reduce the energy consumption of this type of platform.  Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling}  
-developed a method that minimizes the value of $energy\cdot delay^2$ (the delay is the sum of slack times that happen during synchronous communications) by dynamically assigning new frequencies to the CPUs of the heterogeneous cluster. Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed
-an algorithm that divides the executed tasks into two types: the critical and 
-non critical tasks. The algorithm scales down the frequency of  non critical tasks proportionally to their  slack and communication times while limiting  the performance degradation percentage to less than 10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed 
-  a heterogeneous cluster composed of two  types 
-of Intel and AMD processors. They use a gradient method to predict the impact of DVFS operations on performance.
-In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, 
- the best frequencies for a specified heterogeneous cluster are selected offline using some 
-heuristic. Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic programming approach to  
-minimize the power consumption of heterogeneous servers  while respecting given time constraints. This approach 
-had considerable overhead.
-In contrast to the above described papers, this paper presents the following contributions :
+The work presented in this paper concerns the second type of platform, with
+heterogeneous CPUs.  Many methods were conceived to reduce the energy
+consumption of this type of platform.  Naveen et
+al.~\cite{Naveen_Power.Efficient.Resource.Scaling} developed a method that
+minimizes the value of $\mathit{energy}\times \mathit{delay}^2$ (the delay is
+the sum of slack times that happen during synchronous communications) by
+dynamically assigning new frequencies to the CPUs of the heterogeneous
+cluster. Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling}
+proposed an algorithm that divides the executed tasks into two types: the
+critical and non critical tasks. The algorithm scales down the frequency of non
+critical tasks proportionally to their slack and communication times while
+limiting the performance degradation percentage to less than
+10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed a
+heterogeneous cluster composed of two types of Intel and AMD processors. They
+use a gradient method to predict the impact of DVFS operations on performance.
+In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and
+\cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, the best
+frequencies for a specified heterogeneous cluster are selected offline using
+some heuristic. Chen et
+al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic
+programming approach to minimize the power consumption of heterogeneous servers
+while respecting given time constraints. This approach had considerable
+overhead.  In contrast to the above described papers, this paper presents the
+following contributions :
 \begin{enumerate}
 \item  two new energy and performance models for message passing iterative synchronous applications running over 
        a heterogeneous platform. Both models take into account  communication and slack times. The models can predict the required energy and the execution time of the application.
 \begin{enumerate}
 \item  two new energy and performance models for message passing iterative synchronous applications running over 
        a heterogeneous platform. Both models take into account  communication and slack times. The models can predict the required energy and the execution time of the application.
@@ -228,14 +255,14 @@ network. Therefore, each node has different characteristics such as computing
 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
 have the same network bandwidth and latency.
 
 power (FLOPS), energy consumption, CPU's frequency range, \dots{} but they all
 have the same network bandwidth and latency.
 
-The overall execution time  of a distributed iterative synchronous application 
-over a heterogeneous platform  consists of the sum of the computation time and 
-the communication time for every iteration on a node. However, due to the 
-heterogeneous computation power of the computing nodes, slack times might occur 
-when fast nodes have to  wait, during synchronous communications, for  the slower 
-nodes to finish  their computations (see Figure~(\ref{fig:heter})). 
-Therefore,  the overall execution time  of the program is the execution time of the slowest
-task which has the highest computation time and no slack time.
+The overall execution time of a distributed iterative synchronous application
+over a heterogeneous platform consists of the sum of the computation time and
+the communication time for every iteration on a node. However, due to the
+heterogeneous computation power of the computing nodes, slack times might occur
+when fast nodes have to wait, during synchronous communications, for the slower
+nodes to finish their computations (see Figure~\ref{fig:heter}).  Therefore, the
+overall execution time of the program is the execution time of the slowest task
+which has the highest computation time and no slack time.
   
  \begin{figure}[!t]
   \centering
   
  \begin{figure}[!t]
   \centering
@@ -254,7 +281,7 @@ factor S which is the ratio between  the maximum and the new frequency of a CPU
 as in (\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
 as in (\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
- S = \frac{F_\textit{max}}{F_\textit{new}}
+ S = \frac{\Fmax}{\Fnew}
 \end{equation}
  The execution time of a compute bound sequential program is linearly proportional 
  to the frequency scaling factor $S$.  On the other hand,  message passing 
 \end{equation}
  The execution time of a compute bound sequential program is linearly proportional 
  to the frequency scaling factor $S$.  On the other hand,  message passing 
@@ -279,16 +306,15 @@ operation. Then the execution time for one iteration of the application with any
 vector of scaling factors can be predicted using (\ref{eq:perf}).
 \begin{equation}
   \label{eq:perf}
 vector of scaling factors can be predicted using (\ref{eq:perf}).
 \begin{equation}
   \label{eq:perf}
- \textit  T_\textit{new} = 
- \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) +  MinTcm 
+  \Tnew = \max_{i=1,2,\dots,N} ({\TcpOld_{i}} \cdot S_{i}) +  \MinTcm
 \end{equation}
 Where:
 \begin{equation}
 \label{eq:perf2}
 \end{equation}
 Where:
 \begin{equation}
 \label{eq:perf2}
MinTcm = \min_{i=1,2,\dots,N} (Tcm_i)
\MinTcm = \min_{i=1,2,\dots,N} (\Tcm_i)
 \end{equation}
 \end{equation}
-where  $TcpOld_i$ is  the computation  time of  processor $i$  during  the first
-iteration and $MinTcm$  is the communication time of  the slowest processor from
+where  $\TcpOld_i$ is  the computation  time of  processor $i$  during  the first
+iteration and $\MinTcm$  is the communication time of  the slowest processor from
 the  first iteration.   The model  computes  the maximum  computation time  with
 scaling factor  from each node  added to the  communication time of  the slowest
 node. It means only the communication  time without any slack time is taken into
 the  first iteration.   The model  computes  the maximum  computation time  with
 scaling factor  from each node  added to the  communication time of  the slowest
 node. It means only the communication  time without any slack time is taken into
@@ -309,28 +335,28 @@ Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Schedul
 Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by a processor into
 two power metrics: the static and the dynamic power.  While the first one is
 consumed as long as the computing unit is turned on, the latter is only consumed during
 Rizvandi_Some.Observations.on.Optimal.Frequency} divide the power consumed by a processor into
 two power metrics: the static and the dynamic power.  While the first one is
 consumed as long as the computing unit is turned on, the latter is only consumed during
-computation times.  The dynamic power $Pd$ is related to the switching
-activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
+computation times.  The dynamic power $\Pd$ is related to the switching
+activity $\alpha$, load capacitance $\CL$, the supply voltage $V$ and
 operational frequency $F$, as shown in (\ref{eq:pd}).
 \begin{equation}
   \label{eq:pd}
 operational frequency $F$, as shown in (\ref{eq:pd}).
 \begin{equation}
   \label{eq:pd}
-  Pd = \alpha \cdot C_L \cdot V^2 \cdot F
+  \Pd = \alpha \cdot \CL \cdot V^2 \cdot F
 \end{equation}
 \end{equation}
-The static power $Ps$ captures the leakage power as follows:
+The static power $\Ps$ captures the leakage power as follows:
 \begin{equation}
   \label{eq:ps}
 \begin{equation}
   \label{eq:ps}
-   Ps  = V \cdot N_{trans} \cdot K_{design} \cdot I_{leak}
+   \Ps  = V \cdot \Ntrans \cdot \Kdesign \cdot \Ileak
 \end{equation}
 \end{equation}
-where V is the supply voltage, $N_{trans}$ is the number of transistors,
-$K_{design}$ is a design dependent parameter and $I_{leak}$ is a
+where V is the supply voltage, $\Ntrans$ is the number of transistors,
+$\Kdesign$ is a design dependent parameter and $\Ileak$ is a
 technology dependent parameter.  The energy consumed by an individual processor
 to execute a given program can be computed as:
 \begin{equation}
   \label{eq:eind}
 technology dependent parameter.  The energy consumed by an individual processor
 to execute a given program can be computed as:
 \begin{equation}
   \label{eq:eind}
-   E_\textit{ind} =  Pd \cdot Tcp + Ps \cdot T
+  \Eind =  \Pd \cdot \Tcp + \Ps \cdot T
 \end{equation}
 \end{equation}
-where $T$ is the execution time of the program, $Tcp$ is the computation
-time and $Tcp \le T$.  $Tcp$ may be equal to $T$ if there is no
+where $T$ is the execution time of the program, $\Tcp$ is the computation
+time and $\Tcp \le T$.  $\Tcp$ may be equal to $T$ if there is no
 communication and no slack time.
 
 The main objective of DVFS operation is to reduce the overall energy consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  
 communication and no slack time.
 
 The main objective of DVFS operation is to reduce the overall energy consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  
@@ -341,19 +367,19 @@ process of the frequency can be expressed by the scaling factor $S$ which is the
 ratio between the maximum and the new frequency as in (\ref{eq:s}).
 The CPU governors are power schemes supplied by the operating
 system's kernel to lower a core's frequency. The new frequency 
 ratio between the maximum and the new frequency as in (\ref{eq:s}).
 The CPU governors are power schemes supplied by the operating
 system's kernel to lower a core's frequency. The new frequency 
-$F_{new}$ from (\ref{eq:s}) can be calculated as follows:
+$\Fnew$ from (\ref{eq:s}) can be calculated as follows:
 \begin{equation}
   \label{eq:fnew}
 \begin{equation}
   \label{eq:fnew}
-   F_\textit{new} = S^{-1} \cdot F_\textit{max}
+   \Fnew = S^{-1} \cdot \Fmax
 \end{equation}
 \end{equation}
-Replacing $F_{new}$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following 
+Replacing $\Fnew$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following 
 equation for dynamic power consumption:
 \begin{multline}
   \label{eq:pdnew}
 equation for dynamic power consumption:
 \begin{multline}
   \label{eq:pdnew}
-   {P}_\textit{dNew} = \alpha \cdot C_L \cdot V^2 \cdot F_{new} = \alpha \cdot C_L \cdot \beta^2 \cdot F_{new}^3 \\
-   {} = \alpha \cdot C_L \cdot V^2 \cdot F_{max} \cdot S^{-3} = P_{dOld} \cdot S^{-3}
+   \PdNew = \alpha \cdot \CL \cdot V^2 \cdot \Fnew = \alpha \cdot \CL \cdot \beta^2 \cdot \Fnew^3 \\
+   {} = \alpha \cdot \CL \cdot V^2 \cdot \Fmax \cdot S^{-3} = \PdOld \cdot S^{-3}
 \end{multline}
 \end{multline}
-where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the 
+where $\PdNew$  and $\PdOld$ are the  dynamic power consumed with the 
 new frequency and the maximum frequency respectively.
 
 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
 new frequency and the maximum frequency respectively.
 
 According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
@@ -363,7 +389,7 @@ The new dynamic energy is the  dynamic power multiplied by the new time of compu
 and is given by the following equation:
 \begin{equation}
   \label{eq:Edyn}
 and is given by the following equation:
 \begin{equation}
   \label{eq:Edyn}
-   E_\textit{dNew} = P_{dOld} \cdot S^{-3} \cdot (Tcp \cdot S)= S^{-2}\cdot P_{dOld} \cdot  Tcp 
+   \EdNew = \PdOld \cdot S^{-3} \cdot (\Tcp \cdot S)= S^{-2}\cdot \PdOld \cdot  \Tcp 
 \end{equation}
 The static power is related to the power leakage of the CPU and is consumed during computation 
 and even when idle. As in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling}, 
 \end{equation}
 The static power is related to the power leakage of the CPU and is consumed during computation 
 and even when idle. As in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energy.efficient.Dynamic.Task.Scheduling}, 
@@ -376,18 +402,18 @@ to the frequency scaling factor, while this scaling factor does not affect the c
 The static energy of a processor after scaling its frequency is computed as follows: 
 \begin{equation}
   \label{eq:Estatic}
 The static energy of a processor after scaling its frequency is computed as follows: 
 \begin{equation}
   \label{eq:Estatic}
E_\textit{s} = Ps \cdot (Tcp \cdot S  + Tcm)
 \Es = \Ps \cdot (\Tcp \cdot S  + \Tcm)
 \end{equation}
 
 In  the  considered  heterogeneous  platform,  each  processor  $i$  might  have
 \end{equation}
 
 In  the  considered  heterogeneous  platform,  each  processor  $i$  might  have
-different   dynamic  and  static   powers,  noted   as  $Pd_{i}$   and  $Ps_{i}$
+different   dynamic  and  static   powers,  noted   as  $\Pd_{i}$   and  $\Ps_{i}$
 respectively.  Therefore,  even if  the  distributed  message passing  iterative
 application  is  load balanced,  the  computation time  of  each  CPU $i$  noted
 respectively.  Therefore,  even if  the  distributed  message passing  iterative
 application  is  load balanced,  the  computation time  of  each  CPU $i$  noted
-$Tcp_{i}$ might  be different and  different frequency scaling factors  might be
+$\Tcp_{i}$ might  be different and  different frequency scaling factors  might be
 computed in order to decrease  the overall energy consumption of the application
 and reduce slack  times.  The communication time of a processor  $i$ is noted as
 computed in order to decrease  the overall energy consumption of the application
 and reduce slack  times.  The communication time of a processor  $i$ is noted as
-$Tcm_{i}$  and could  contain slack  times when  communicating  with slower
-nodes,  see figure(\ref{fig:heter}).  Therefore,  all nodes  do  not have  equal
+$\Tcm_{i}$  and could  contain slack  times when  communicating  with slower
+nodes,  see Figure~\ref{fig:heter}.  Therefore,  all nodes  do  not have  equal
 communication  times. While  the dynamic  energy  is computed  according to  the
 frequency  scaling   factor  and   the  dynamic  power   of  each  node   as  in
 (\ref{eq:Edyn}), the static energy is computed  as the sum of the execution time
 communication  times. While  the dynamic  energy  is computed  according to  the
 frequency  scaling   factor  and   the  dynamic  power   of  each  node   as  in
 (\ref{eq:Edyn}), the static energy is computed  as the sum of the execution time
@@ -397,9 +423,9 @@ heterogeneous platform during one iteration  is the summation of all dynamic and
 static energies for each processor.  It is computed as follows:
 \begin{multline}
   \label{eq:energy}
 static energies for each processor.  It is computed as follows:
 \begin{multline}
   \label{eq:energy}
- E = \sum_{i=1}^{N} {(S_i^{-2} \cdot Pd_{i} \cdot  Tcp_i)} + {} \\
- \sum_{i=1}^{N} (Ps_{i} \cdot (\max_{i=1,2,\dots,N} (Tcp_i \cdot S_{i}) +
-  {MinTcm))}
+ E = \sum_{i=1}^{N} {(S_i^{-2} \cdot \Pd_{i} \cdot  \Tcp_i)} + {} \\
+ \sum_{i=1}^{N} (\Ps_{i} \cdot (\max_{i=1,2,\dots,N} (\Tcp_i \cdot S_{i}) +
+  {\MinTcm))}
  \end{multline}
 
 Reducing the frequencies of the processors according to the vector of
  \end{multline}
 
 Reducing the frequencies of the processors according to the vector of
@@ -446,9 +472,9 @@ scaling  down the  frequencies of  some processors)  and the  initial  one (with
 maximum frequency for all nodes) as follows:
 \begin{multline}
   \label{eq:pnorm}
 maximum frequency for all nodes) as follows:
 \begin{multline}
   \label{eq:pnorm}
-  P_\textit{Norm} = \frac{T_\textit{New}}{T_\textit{Old}}\\
-       {} = \frac{ \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) +MinTcm}
-           {\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
+  \Pnorm = \frac{\Tnew}{\Told}\\
+       {} = \frac{ \max_{i=1,2,\dots,N} (\Tcp_{i} \cdot S_{i}) +\MinTcm}
+           {\max_{i=1,2,\dots,N}{(\Tcp_i+\Tcm_i)}}
 \end{multline}
 
 
 \end{multline}
 
 
@@ -456,13 +482,13 @@ In the same way, the energy is normalized by computing the ratio between the con
 while scaling down the frequency and the consumed energy with maximum frequency for all nodes:
 \begin{multline}
   \label{eq:enorm}
 while scaling down the frequency and the consumed energy with maximum frequency for all nodes:
 \begin{multline}
   \label{eq:enorm}
-  E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
-  {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} +
- \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
- \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
+  \Enorm = \frac{\Ereduced}{\Eoriginal} \\
+  {} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot  \Tcp_i)} +
+ \sum_{i=1}^{N} {(\Ps_i \cdot \Tnew)}}{\sum_{i=1}^{N}{( \Pd_i \cdot  \Tcp_i)} +
+ \sum_{i=1}^{N} {(\Ps_i \cdot \Told)}}
 \end{multline} 
 \end{multline} 
-Where $E_\textit{Reduced}$ and $E_\textit{Original}$ are computed using (\ref{eq:energy}) and
-  $T_{New}$ and $T_{Old}$ are computed as in (\ref{eq:pnorm}).
+Where $\Ereduced$ and $\Eoriginal$ are computed using (\ref{eq:energy}) and
+  $\Tnew$ and $\Told$ are computed as in (\ref{eq:pnorm}).
 
 While the main 
 goal is to optimize the energy and execution time at the same time, the normalized 
 
 While the main 
 goal is to optimize the energy and execution time at the same time, the normalized 
@@ -477,9 +503,9 @@ execution time following the same direction.  Therefore, the equation of the
 normalized execution time is inverted which gives the normalized performance equation, as follows:
 \begin{multline}
   \label{eq:pnorm_inv}
 normalized execution time is inverted which gives the normalized performance equation, as follows:
 \begin{multline}
   \label{eq:pnorm_inv}
-  P_\textit{Norm} = \frac{T_\textit{Old}}{T_\textit{New}}\\
-          = \frac{\max_{i=1,2,\dots,N}{(Tcp_i+Tcm_i)}}
-            { \max_{i=1,2,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm} 
+  \Pnorm = \frac{\Told}{\Tnew}\\
+          = \frac{\max_{i=1,2,\dots,N}{(\Tcp_i+\Tcm_i)}}
+            { \max_{i=1,2,\dots,N} (\Tcp_{i} \cdot S_{i}) + \MinTcm} 
 \end{multline}
 
 
 \end{multline}
 
 
@@ -495,18 +521,18 @@ normalized execution time is inverted which gives the normalized performance equ
   \caption{The energy and performance relation}
 \end{figure}
 
   \caption{The energy and performance relation}
 \end{figure}
 
-Then, the objective function can be modeled in order to find the maximum distance
-between the energy curve (\ref{eq:enorm}) and the  performance
-curve (\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
-represents the minimum energy consumption with minimum execution time (maximum 
-performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}). Then the objective
-function has the following form:
+Then, the objective function can be modeled in order to find the maximum
+distance between the energy curve (\ref{eq:enorm}) and the performance curve
+(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
+represents the minimum energy consumption with minimum execution time (maximum
+performance) at the same time, see Figure~\ref{fig:r1} or
+Figure~\ref{fig:r2}. Then the objective function has the following form:
 \begin{equation}
   \label{eq:max}
 \begin{equation}
   \label{eq:max}
-  Max Dist = 
-  \max_{i=1,\dots F, j=1,\dots,N}
-      (\overbrace{P_\textit{Norm}(S_{ij})}^{\text{Maximize}} -
-       \overbrace{E_\textit{Norm}(S_{ij})}^{\text{Minimize}} )
+  \MaxDist = 
+  \mathop{\max_{i=1,\dots F}}_{j=1,\dots,N}
+      (\overbrace{\Pnorm(S_{ij})}^{\text{Maximize}} -
+       \overbrace{\Enorm(S_{ij})}^{\text{Minimize}} )
 \end{equation}
 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each node. 
 Then, the optimal set of scaling factors that satisfies (\ref{eq:max}) can be selected.  
 \end{equation}
 where $N$ is the number of nodes and $F$ is the  number of available frequencies for each node. 
 Then, the optimal set of scaling factors that satisfies (\ref{eq:max}) can be selected.  
@@ -518,59 +544,63 @@ the energy curve has a convex form as shown in~\cite{Zhuo_Energy.efficient.Dynam
 \label{sec.optim}
 
 \subsection{The algorithm details}
 \label{sec.optim}
 
 \subsection{The algorithm details}
-In this section, algorithm \ref{HSA} is presented. It selects the frequency scaling factors 
-vector that gives the best trade-off between minimizing the energy consumption  and maximizing 
-the performance of a message passing synchronous iterative application executed on a heterogeneous 
-platform. It works online during the execution time of the iterative message passing program.  
-It uses information gathered during the first iteration such as the computation time and the 
-communication time in one iteration for each node. The algorithm is executed  after the first 
-iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective 
-function (\ref{eq:max}). The program applies DVFS operations to change the frequencies of the CPUs 
-according to the computed scaling factors.  This algorithm is called just once during the execution 
-of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called 
-in the iterative MPI program.
-
-The nodes in a heterogeneous platform have different computing powers, thus while executing message 
-passing iterative synchronous applications, fast nodes have to wait for the slower ones to finish their 
-computations before being able to synchronously communicate with them as in figure (\ref{fig:heter}). 
-These periods are called idle or slack times. 
-The algorithm takes into account this problem and tries to reduce these slack times when selecting the 
-frequency scaling factors vector. At first, it selects initial frequency scaling factors that increase 
-the execution times of fast nodes and  minimize the  differences between  the  computation times of 
-fast and slow nodes. The value of the initial frequency scaling factor  for each node is inversely 
-proportional to its computation time that was gathered from the first iteration. These initial frequency 
-scaling factors are computed as   a ratio between the computation time of the slowest node and the 
-computation time of the node $i$ as follows:
+In this section, Algorithm~\ref{HSA} is presented. It selects the frequency
+scaling factors vector that gives the best trade-off between minimizing the
+energy consumption and maximizing the performance of a message passing
+synchronous iterative application executed on a heterogeneous platform. It works
+online during the execution time of the iterative message passing program.  It
+uses information gathered during the first iteration such as the computation
+time and the communication time in one iteration for each node. The algorithm is
+executed after the first iteration and returns a vector of optimal frequency
+scaling factors that satisfies the objective function (\ref{eq:max}). The
+program applies DVFS operations to change the frequencies of the CPUs according
+to the computed scaling factors.  This algorithm is called just once during the
+execution of the program. Algorithm~\ref{dvfs} shows where and when the proposed
+scaling algorithm is called in the iterative MPI program.
+
+The nodes in a heterogeneous platform have different computing powers, thus
+while executing message passing iterative synchronous applications, fast nodes
+have to wait for the slower ones to finish their computations before being able
+to synchronously communicate with them as in Figure~\ref{fig:heter}.  These
+periods are called idle or slack times.  The algorithm takes into account this
+problem and tries to reduce these slack times when selecting the frequency
+scaling factors vector. At first, it selects initial frequency scaling factors
+that increase the execution times of fast nodes and minimize the differences
+between the computation times of fast and slow nodes. The value of the initial
+frequency scaling factor for each node is inversely proportional to its
+computation time that was gathered from the first iteration. These initial
+frequency scaling factors are computed as a ratio between the computation time
+of the slowest node and the computation time of the node $i$ as follows:
 \begin{equation}
   \label{eq:Scp}
 \begin{equation}
   \label{eq:Scp}
Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
\Scp_{i} = \frac{\max_{i=1,2,\dots,N}(\Tcp_i)}{\Tcp_i}
 \end{equation}
 Using the initial  frequency scaling factors computed in (\ref{eq:Scp}), the algorithm computes 
 the initial frequencies for all nodes as a ratio between the maximum frequency of node $i$  
 \end{equation}
 Using the initial  frequency scaling factors computed in (\ref{eq:Scp}), the algorithm computes 
 the initial frequencies for all nodes as a ratio between the maximum frequency of node $i$  
-and the computation scaling factor $Scp_i$ as follows:
+and the computation scaling factor $\Scp_i$ as follows:
 \begin{equation}
   \label{eq:Fint}
 \begin{equation}
   \label{eq:Fint}
- F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
+ F_{i} = \frac{\Fmax_i}{\Scp_i},~{i=1,2,\dots,N}
 \end{equation}
 \end{equation}
-If the computed  initial frequency for a  node is not available in  the gears of
-that  node,  it  is replaced  by  the  nearest  available frequency.  In  figure
-(\ref{fig:st_freq}), the nodes are sorted by their computing power in ascending
-order and the  frequencies of the faster nodes are scaled  down according to the
-computed initial  frequency scaling factors.  The resulting new  frequencies are
-colored in  blue in figure (\ref{fig:st_freq}).  This set of  frequencies can be
-considered  as a higher  bound for  the search  space of  the optimal  vector of
-frequencies because  selecting frequency scaling factors higher  than the higher
-bound will not  improve the performance of the application  and it will increase
-its  overall  energy  consumption.  Therefore  the algorithm  that  selects  the
-frequency  scaling   factors  starts  the  search  method   from  these  initial
-frequencies and takes a downward  search direction toward lower frequencies. The
-algorithm  iterates on all  left frequencies,  from the  higher bound  until all
-nodes  reach  their  minimum   frequencies,  to  compute  their  overall  energy
-consumption and  performance, and select  the optimal frequency  scaling factors
-vector. At each iteration the algorithm determines the slowest node according to
-the equation (\ref{eq:perf}) and keeps  its frequency unchanged, while it lowers
-the  frequency  of  all  other  nodes  by one  gear.   The  new  overall  energy
-consumption  and  execution time  are  computed  according  to the  new  scaling
+If the computed initial frequency for a node is not available in the gears of
+that node, it is replaced by the nearest available frequency.  In
+Figure~\ref{fig:st_freq}, the nodes are sorted by their computing power in
+ascending order and the frequencies of the faster nodes are scaled down
+according to the computed initial frequency scaling factors.  The resulting new
+frequencies are colored in blue in Figure~\ref{fig:st_freq}.  This set of
+frequencies can be considered as a higher bound for the search space of the
+optimal vector of frequencies because selecting frequency scaling factors higher
+than the higher bound will not improve the performance of the application and it
+will increase its overall energy consumption.  Therefore the algorithm that
+selects the frequency scaling factors starts the search method from these
+initial frequencies and takes a downward search direction toward lower
+frequencies. The algorithm iterates on all left frequencies, from the higher
+bound until all nodes reach their minimum frequencies, to compute their overall
+energy consumption and performance, and select the optimal frequency scaling
+factors vector. At each iteration the algorithm determines the slowest node
+according to the equation (\ref{eq:perf}) and keeps its frequency unchanged,
+while it lowers the frequency of all other nodes by one gear.  The new overall
+energy consumption and execution time are computed according to the new scaling
 factors.  The optimal set of frequency scaling factors is the set that gives the
 highest distance according to the objective function (\ref{eq:max}).
 
 factors.  The optimal set of frequency scaling factors is the set that gives the
 highest distance according to the objective function (\ref{eq:max}).
 
@@ -602,41 +632,42 @@ maximum distance  between the  energy curve and  the performance curve  is while
     % \footnotesize
     \Require ~
     \begin{description}
     % \footnotesize
     \Require ~
     \begin{description}
-    \item[$Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
-    \item[$Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
-    \item[$Fmax_i$] array of the maximum frequencies for all nodes.
-    \item[$Pd_i$] array of the dynamic powers for all nodes.
-    \item[$Ps_i$] array of the static powers for all nodes.
-    \item[$Fdiff_i$] array of the difference between two successive frequencies for all nodes.
+    \item[$\Tcp_i$] array of all computation times for all nodes during one iteration and with highest frequency.
+    \item[$\Tcm_i$] array of all communication times for all nodes during one iteration and with highest frequency.
+    \item[$\Fmax_i$] array of the maximum frequencies for all nodes.
+    \item[$\Pd_i$] array of the dynamic powers for all nodes.
+    \item[$\Ps_i$] array of the static powers for all nodes.
+    \item[$\Fdiff_i$] array of the difference between two successive frequencies for all nodes.
     \end{description}
     \end{description}
-    \Ensure $Sopt_1,Sopt_2 \dots, Sopt_N$ is a vector of optimal scaling factors
+    \Ensure $\Sopt_1,\Sopt_2 \dots, \Sopt_N$ is a vector of optimal scaling factors
 
 
-    \State $ Scp_i \gets \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i} $
-    \State $F_{i} \gets  \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}$
+    \State $\Scp_i \gets \frac{\max_{i=1,2,\dots,N}(\Tcp_i)}{\Tcp_i} $
+    \State $F_{i} \gets  \frac{\Fmax_i}{\Scp_i},~{i=1,2,\cdots,N}$
     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
     \If{(not the first frequency)}
     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
     \If{(not the first frequency)}
-          \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
+          \State $F_i \gets F_i+\Fdiff_i,~i=1,\dots,N.$
     \EndIf 
     \EndIf 
-    \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
-    \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
-    \State  $Sopt_{i} \gets 1,~i=1,\dots,N. $
-    \State $Dist \gets 0 $
+    \State $\Told \gets max_{~i=1,\dots,N } (\Tcp_i+\Tcm_i)$
+    % \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot  \Tcp_i)} +\sum_{i=1}^{N} {(\Ps_i \cdot \Told)}$
+    \State $\Eoriginal \gets \sum_{i=1}^{N}{( \Pd_i \cdot  \Tcp_i + \Ps_i \cdot \Told)}$
+    \State $\Sopt_{i} \gets 1,~i=1,\dots,N. $
+    \State $\Dist \gets 0 $
     \While {(all nodes not reach their  minimum  frequency)}
         \If{(not the last freq. \textbf{and} not the slowest node)}
     \While {(all nodes not reach their  minimum  frequency)}
         \If{(not the last freq. \textbf{and} not the slowest node)}
-        \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
-        \State $S_i \gets \frac{Fmax_i}{F_i},~i=1,\dots,N.$
+        \State $F_i \gets F_i - \Fdiff_i,~i=1,\dots,N.$
+        \State $S_i \gets \frac{\Fmax_i}{F_i},~i=1,\dots,N.$
         \EndIf
         \EndIf
-       \State $T_{New} \gets max_\textit{~i=1,\dots,N} (Tcp_{i} \cdot S_{i}) + MinTcm $
-       \State $E_\textit{Reduced} \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot  Tcp_i)} + $  \hspace*{43 mm} 
-               $\sum_{i=1}^{N} {(Ps_i \cdot T_{New})} $
-       \State $ P_\textit{Norm} \gets \frac{T_\textit{Old}}{T_\textit{New}}$
-       \State $E_\textit{Norm}\gets \frac{E_\textit{Reduced}}{E_\textit{Original}}$
+       \State $\Tnew \gets max_\textit{~i=1,\dots,N} (\Tcp_{i} \cdot S_{i}) + \MinTcm $
+%       \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot  \Tcp_i)} + \sum_{i=1}^{N} {(\Ps_i \cdot \rlap{\Tnew)}} $
+       \State $\Ereduced \gets \sum_{i=1}^{N}{(S_i^{-2} \cdot \Pd_i \cdot  \Tcp_i + \Ps_i \cdot \rlap{\Tnew)}} $
+       \State $\Pnorm \gets \frac{\Told}{\Tnew}$
+       \State $\Enorm\gets \frac{\Ereduced}{\Eoriginal}$
       \If{$(\Pnorm - \Enorm > \Dist)$}
       \If{$(\Pnorm - \Enorm > \Dist)$}
-        \State $Sopt_{i} \gets S_{i},~i=1,\dots,N. $
+        \State $\Sopt_{i} \gets S_{i},~i=1,\dots,N. $
         \State $\Dist \gets \Pnorm - \Enorm$
       \EndIf
     \EndWhile
         \State $\Dist \gets \Pnorm - \Enorm$
       \EndIf
     \EndWhile
-    \State  Return $Sopt_1,Sopt_2,\dots,Sopt_N$
+    \State  Return $\Sopt_1,\Sopt_2,\dots,\Sopt_N$
   \end{algorithmic}
   \caption{frequency scaling factors selection algorithm}
   \label{HSA}
   \end{algorithmic}
   \caption{frequency scaling factors selection algorithm}
   \label{HSA}
@@ -651,7 +682,7 @@ maximum distance  between the  energy curve and  the performance curve  is while
       \If {$(k=1)$}
         \State Gather all times of computation and\newline\hspace*{3em}%
                communication from each node.
       \If {$(k=1)$}
         \State Gather all times of computation and\newline\hspace*{3em}%
                communication from each node.
-        \State Call algorithm \ref{HSA}.
+        \State Call Algorithm \ref{HSA}.
         \State Compute the new frequencies from the\newline\hspace*{3em}%
                returned optimal scaling factors.
         \State Set the new frequencies to nodes.
         \State Compute the new frequencies from the\newline\hspace*{3em}%
                returned optimal scaling factors.
         \State Set the new frequencies to nodes.
@@ -678,28 +709,33 @@ parallel benchmarks NPB v3.3  \cite{NAS.Parallel.Benchmarks}, running class B on
 very precise, the maximum  normalized difference between the predicted execution
 time and the real execution time is equal to 0.03 for all the NAS benchmarks.
 
 very precise, the maximum  normalized difference between the predicted execution
 time and the real execution time is equal to 0.03 for all the NAS benchmarks.
 
-Since  the proposed algorithm is not an exact method it does not test all the possible solutions (vectors of scaling factors) 
-in the search space. To prove its efficiency, it was compared on small instances to a brute force search algorithm 
-that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
-different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
-and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
-for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in 
-table~\ref{table:platform}, it takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes 
-to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number 
-of iterations and $N$ is the number of computing nodes. The algorithm needs  from 12 to 20 iterations to select the best 
-vector of frequency scaling factors that gives the results of the next sections.
+Since the proposed algorithm is not an exact method it does not test all the
+possible solutions (vectors of scaling factors) in the search space. To prove
+its efficiency, it was compared on small instances to a brute force search
+algorithm that tests all the possible solutions. The brute force algorithm was
+applied to different NAS benchmarks classes with different number of nodes. The
+solutions returned by the brute force algorithm and the proposed algorithm were
+identical and the proposed algorithm was on average 10 times faster than the
+brute force algorithm. It has a small execution time: for a heterogeneous
+cluster composed of four different types of nodes having the characteristics
+presented in Table~\ref{table:platform}, it takes on average \np[ms]{0.04} for 4
+nodes and \np[ms]{0.15} on average for 144 nodes to compute the best scaling
+factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$
+is the number of iterations and $N$ is the number of computing nodes. The
+algorithm needs from 12 to 20 iterations to select the best vector of frequency
+scaling factors that gives the results of the next sections.
 
 \section{Experimental results}
 \label{sec.expe}
 To  evaluate the  efficiency and  the  overall energy  consumption reduction  of
 
 \section{Experimental results}
 \label{sec.expe}
 To  evaluate the  efficiency and  the  overall energy  consumption reduction  of
-algorithm~\ref{HSA}, it was applied to the NAS parallel benchmarks NPB v3.3. The
+Algorithm~\ref{HSA}, it was applied to the NAS parallel benchmarks NPB v3.3. The
 experiments were executed on the  simulator SimGrid/SMPI which offers easy tools
 to create a heterogeneous platform and run message passing applications over it.
 The heterogeneous  platform that was used  in the experiments, had  one core per
 node because just one process was executed per node.  The heterogeneous platform
 was  composed  of  four  types  of  nodes. Each  type  of  nodes  had  different
 characteristics  such as  the maximum  CPU  frequency, the  number of  available
 experiments were executed on the  simulator SimGrid/SMPI which offers easy tools
 to create a heterogeneous platform and run message passing applications over it.
 The heterogeneous  platform that was used  in the experiments, had  one core per
 node because just one process was executed per node.  The heterogeneous platform
 was  composed  of  four  types  of  nodes. Each  type  of  nodes  had  different
 characteristics  such as  the maximum  CPU  frequency, the  number of  available
-frequencies  and the  computational power,  see Table  \ref{table:platform}. The
+frequencies  and the  computational power,  see Table~\ref{table:platform}. The
 characteristics  of  these  different  types  of nodes  are  inspired  from  the
 specifications of real  Intel processors.  The heterogeneous platform  had up to
 144 nodes and had nodes from the four types in equal proportions, for example if
 characteristics  of  these  different  types  of nodes  are  inspired  from  the
 specifications of real  Intel processors.  The heterogeneous platform  had up to
 144 nodes and had nodes from the four types in equal proportions, for example if
@@ -765,6 +801,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
+    \hspace{-2.2084pt}%
     Program     & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
     Program     & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
@@ -793,6 +830,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
+     \hspace{-2.2084pt}%
     Program    & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
     Program    & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
@@ -821,6 +859,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
+    \hspace{-2.2084pt}%
     Program     & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
     Program     & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
@@ -849,6 +888,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
+    \hspace{-2.2084pt}%
     Program    & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
     Program    & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
@@ -877,6 +917,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
+    \hspace{-2.2084pt}%
     Program    & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
     Program    & Execution     & Energy         & Energy      & Performance        & Distance      \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &               \\
     \hline
@@ -905,6 +946,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes.
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
   \centering
   \begin{tabular}{|*{7}{r|}}
     \hline
+    \hspace{-2.2084pt}%
     Program    & Execution     & Energy         & Energy      & Performance        & Distance     \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &              \\
     \hline
     Program    & Execution     & Energy         & Energy      & Performance        & Distance     \\
     name       & time/s        & consumption/J  & saving\%    & degradation\%      &              \\
     \hline
@@ -929,9 +971,9 @@ The overall energy  consumption was computed for each  instance according to the
 energy  consumption  model  (\ref{eq:energy}),  with and  without  applying  the
 algorithm. The execution time was also measured for all these experiments. Then,
 the energy saving and performance degradation percentages were computed for each
 energy  consumption  model  (\ref{eq:energy}),  with and  without  applying  the
 algorithm. The execution time was also measured for all these experiments. Then,
 the energy saving and performance degradation percentages were computed for each
-instance.    The   results   are   presented  in   Tables   (\ref{table:res_4n},
+instance.    The   results   are   presented  in   Tables~\ref{table:res_4n},
 \ref{table:res_8n},           \ref{table:res_16n},          \ref{table:res_32n},
 \ref{table:res_8n},           \ref{table:res_16n},          \ref{table:res_32n},
-\ref{table:res_64n} and \ref{table:res_128n}). All these results are the average
+\ref{table:res_64n} and \ref{table:res_128n}. All these results are the average
 values  from many experiments  for energy  savings and  performance degradation.
 The tables show the experimental results for running the NAS parallel benchmarks
 on  different  number  of  nodes.   The  experiments  show  that  the  algorithm
 values  from many experiments  for energy  savings and  performance degradation.
 The tables show the experimental results for running the NAS parallel benchmarks
 on  different  number  of  nodes.   The  experiments  show  that  the  algorithm
@@ -945,7 +987,7 @@ computation required  for each iteration is  divided by the  number of computing
 nodes.  On the other hand,  more communications are required when increasing the
 number  of  nodes so  the  static energy  increases  linearly  according to  the
 communication time and the dynamic power  is less relevant in the overall energy
 nodes.  On the other hand,  more communications are required when increasing the
 number  of  nodes so  the  static energy  increases  linearly  according to  the
 communication time and the dynamic power  is less relevant in the overall energy
-consumption.   Therefore, reducing the  frequency with  algorithm~(\ref{HSA}) is
+consumption.   Therefore, reducing the  frequency with  Algorithm~\ref{HSA} is
 less effective  in reducing the overall  energy savings. It can  also be noticed
 that for the benchmarks EP and  SP that contain little or no communications, the
 energy savings are  not significantly affected by the high  number of nodes.  No
 less effective  in reducing the overall  energy savings. It can  also be noticed
 that for the benchmarks EP and  SP that contain little or no communications, the
 energy savings are  not significantly affected by the high  number of nodes.  No
@@ -971,7 +1013,7 @@ small when compared to the communication times.
   \caption{The energy and performance for all NAS benchmarks running with a different number of nodes}
 \end{figure}
 
   \caption{The energy and performance for all NAS benchmarks running with a different number of nodes}
 \end{figure}
 
-Figures  \ref{fig:energy} and  \ref{fig:per_deg} present  the energy  saving and
+Figures~\ref{fig:energy} and  \ref{fig:per_deg} present  the energy  saving and
 performance  degradation respectively for  all the  benchmarks according  to the
 number of used nodes. As shown  in the first plot, the energy saving percentages
 of the benchmarks MG,  LU, BT and FT decrease linearly when  the number of nodes
 performance  degradation respectively for  all the  benchmarks according  to the
 number of used nodes. As shown  in the first plot, the energy saving percentages
 of the benchmarks MG,  LU, BT and FT decrease linearly when  the number of nodes
@@ -1004,7 +1046,7 @@ two new power scenarios are the following:
 
 The NAS parallel benchmarks were  executed again over processors that follow the
 new power scenarios.   The class C of each  benchmark was run over 8  or 9 nodes
 
 The NAS parallel benchmarks were  executed again over processors that follow the
 new power scenarios.   The class C of each  benchmark was run over 8  or 9 nodes
-and   the    results   are   presented   in    Tables   \ref{table:res_s1}   and
+and   the    results   are   presented   in    Tables~\ref{table:res_s1}   and
 \ref{table:res_s2}. These tables  show that the energy saving  percentage of the
 70\%-30\% scenario is  smaller for all benchmarks compared  to the energy saving
 of the 90\%-10\% scenario. Indeed, in  the latter more dynamic power is consumed
 \ref{table:res_s2}. These tables  show that the energy saving  percentage of the
 70\%-30\% scenario is  smaller for all benchmarks compared  to the energy saving
 of the 90\%-10\% scenario. Indeed, in  the latter more dynamic power is consumed
@@ -1020,8 +1062,8 @@ really significantly  scale down much the  frequencies of the nodes  in order to
 limit the  increase of the  execution time and  thus limiting the effect  of the
 consumed static energy.
 
 limit the  increase of the  execution time and  thus limiting the effect  of the
 consumed static energy.
 
-Both   new  power   scenarios   are  compared   to   the  old   one  in   figure
-(\ref{fig:sen_comp}). It  shows the average of the  performance degradation, the
+Both   new  power   scenarios   are  compared   to   the  old   one  in
+Figure~\ref{fig:sen_comp}. It  shows the average of the  performance degradation, the
 energy saving and the  distances for all NAS benchmarks of class  C running on 8
 or 9 nodes.   The comparison shows that the energy  saving ratio is proportional
 to the dynamic power ratio: it is increased when applying the 90\%-10\% scenario
 energy saving and the  distances for all NAS benchmarks of class  C running on 8
 or 9 nodes.   The comparison shows that the energy  saving ratio is proportional
 to the dynamic power ratio: it is increased when applying the 90\%-10\% scenario
@@ -1035,7 +1077,7 @@ higher  ratio   for  static  power  (e.g.   70\%-30\%   scenario  and  80\%-20\%
 scenario). Since  the proposed algorithm  optimizes the energy  consumption when
 using a  higher ratio for dynamic  power the algorithm  selects bigger frequency
 scaling  factors that result  in more  energy saving  but less  performance, for
 scenario). Since  the proposed algorithm  optimizes the energy  consumption when
 using a  higher ratio for dynamic  power the algorithm  selects bigger frequency
 scaling  factors that result  in more  energy saving  but less  performance, for
-example see  Figure (\ref{fig:scales_comp}). The  opposite happens when  using a
+example see  Figure~\ref{fig:scales_comp}. The  opposite happens when  using a
 higher  ratio for  static power,  the algorithm  proportionally  selects smaller
 scaling  values which result  in less  energy saving  but also  less performance
 degradation.
 higher  ratio for  static power,  the algorithm  proportionally  selects smaller
 scaling  values which result  in less  energy saving  but also  less performance
 degradation.
@@ -1114,18 +1156,34 @@ degradation.
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
-In this section, the scaling  factors selection algorithm, called MaxDist,
-is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, called EDP. 
-They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Energy\cdot Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
-To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to  start the search from the 
-initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
-
-Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumption for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. The results show that our algorithm provides better energy savings than Spiliopoulos et al. algorithm, 
-on average it results in 29.76\% energy saving while their algorithm returns just 25.75\%. The average of performance degradation percentage is approximately the same for both algorithms, about 4\%. 
+In this section, the scaling factors selection algorithm, called MaxDist, is
+compared to Spiliopoulos et al. algorithm
+\cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, called EDP.  They developed a
+green governor that regularly applies an online frequency selecting algorithm to
+reduce the energy consumed by a multicore architecture without degrading much
+its performance. The algorithm selects the frequencies that minimize the energy
+and delay products, $\mathit{EDP}=\mathit{energy}\times \mathit{delay}$ using
+the predicted overall energy consumption and execution time delay for each
+frequency.  To fairly compare both algorithms, the same energy and execution
+time models, equations (\ref{eq:energy}) and (\ref{eq:fnew}), were used for both
+algorithms to predict the energy consumption and the execution times. Also
+Spiliopoulos et al. algorithm was adapted to start the search from the initial
+frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm
+is an exhaustive search algorithm that minimizes the EDP and has the initial
+frequencies values as an upper bound.
+
+Both algorithms were applied to the parallel NAS benchmarks to compare their
+efficiency. Table~\ref{table:compare_EDP} presents the results of comparing the
+execution times and the energy consumption for both versions of the NAS
+benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous
+nodes. The results show that our algorithm provides better energy savings than
+Spiliopoulos et al. algorithm, on average it results in 29.76\% energy saving
+while their algorithm returns just 25.75\%. The average of performance
+degradation percentage is approximately the same for both algorithms, about 4\%.
 
 
 For all benchmarks,  our algorithm outperforms Spiliopoulos et  al. algorithm in
 
 
 For all benchmarks,  our algorithm outperforms Spiliopoulos et  al. algorithm in
-terms of  energy and  performance trade-off, see  figure (\ref{fig:compare_EDP}),
+terms of  energy and  performance trade-off, see  Figure~\ref{fig:compare_EDP},
 because it maximizes the distance  between the energy saving and the performance
 degradation values while giving the same weight for both metrics.
 
 because it maximizes the distance  between the energy saving and the performance
 degradation values while giving the same weight for both metrics.
 
@@ -1218,6 +1276,5 @@ Babylon (Iraq) for supporting his work.
 
 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
 
 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
 % LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex GPU
-% LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
-% LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT GPUs CPUs AMD
+% LocalWords:  de badri muslim MPI SimGrid GFlops Xeon EP BT GPUs CPUs AMD
 %  LocalWords:  Spiliopoulos scalability
 %  LocalWords:  Spiliopoulos scalability