Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms,
such as scheduling, DVFS, ... DVFS is a widely used process to reduce the energy consumption of a processor by lowering
-its frequency \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also the reduces the number of FLOPS
+its frequency \cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces the number of FLOPS
executed by the processor which might increase the execution time of the application running over that processor.
Therefore, researchers used different optimization strategies to select the frequency that gives the best tradeoff
between the energy reduction and
-performance degradation ratio. \textbf{In our previous paper \cite{Our_first_paper}, a frequency selecting algorithm
-was proposed for distributed iterative application running over homogeneous platform. While in this paper the algorithm is significantly adapted to run over a heterogeneous platform. This platform is a collection of heterogeneous computing nodes interconnected via a high speed homogeneous network.}
-
-The proposed frequency selecting algorithm selects the vector of frequencies for a heterogeneous platform that runs a message passing iterative application, that gives the maximum energy reduction and minimum
-performance degradation ratio simultaneously. The algorithm has a very small
+performance degradation ratio. In \cite{Our_first_paper}, a frequency selecting algorithm
+was proposed to reduce the energy consumption of message passing iterative applications running over homogeneous platforms. The results of the experiments showed significant energy consumption reductions. In this paper, a new frequency selecting algorithm adapted for heterogeneous platform is presented. It selects the vector of frequencies, for a heterogeneous platform running a message passing iterative application, that simultaneously gives the maximum energy reduction and minimum
+performance degradation ratio. The algorithm has a very small
overhead, works online and does not need any training or profiling.
This paper is organized as follows: Section~\ref{sec.relwork} presents some
DVFS is a technique enabled
in modern processors to scale down both the voltage and the frequency of
the CPU while computing, in order to reduce the energy consumption of the processor. DVFS is
-also allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation. Many researchers used different strategies to tackle this problem. Some of them used online methods that compute the new frequency while executing the application \textbf{add a reference for an online method here}. Others used offline methods that might need to run the application and profile it before selecting the new frequency \textbf{add a reference for an offline method}. The methods could be heuristics, exact or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform, synchronous or asynchronous application, ...
+also allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation. Many researchers used different strategies to tackle this problem. Some of them developed online methods that compute the new frequency while executing the application, such as ~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}. Others used offline methods that might need to run the application and profile it before selecting the new frequency, such as ~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}. The methods could be heuristics, exact or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform, synchronous or asynchronous application, ...
In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
Some works have already been done for such platforms and it can be classified into two types of heterogeneous platforms:
a heterogeneous (GPUs and CPUs) cluster that enables DVFS gave better energy and performance
efficiency than other clusters only composed of CPUs.
-The work presented in this paper concerns the second type of platform,, with heterogeneous CPUs.
+The work presented in this paper concerns the second type of platform, with heterogeneous CPUs.
Many methods were conceived to reduce the energy consumption of this type of platform. Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling}
-developed a method that minimize the value of $energy*delay^2$ by dynamically assigning new frequencies to the CPUs of the heterogeneous cluster. \textbf{should define the delay} Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} propose
+developed a method that minimizes the value of $energy*delay^2$ (the delay is the sum of slack times that happen during synchronous communications) by dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.. Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} propose
an algorithm that divides the executed tasks into two types: the critical and
non critical tasks. The algorithm scales down the frequency of non critical tasks proportionally to their slack and communication times while limiting the performance degradation percentage to less than 10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}
and \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}, a heterogeneous cluster composed of two types
-of Intel and AMD processors. The consumed energy
-and the performance for each frequency gear were predicted, then the algorithm selected the best gear that gave
-the best tradeoff. \textbf{what energy model they used? what method they used? }
+of Intel and AMD processors. The consumed energy and the performance were measured for each frequency, then a linear regression method is used to select the gear that gave the best tradeoff between energy consumption and performance.
In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks},
the best frequencies for a specified heterogeneous cluster are selected offline using some
-heuristic. Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic approach to
-minimize the power consumption of heterogeneous severs with time/space complexity \textbf{what does it mean}. This approach
+heuristic. Chen et al.~\cite{Chen_DVFS.under.quality.of.service.requirements} used a greedy dynamic programming approach to
+minimize the power consumption of heterogeneous severs while respecting given time constraints. This approach
had considerable overhead.
In contrast to the above described papers, this paper presents the following contributions :
\begin{enumerate}
\begin{figure}[t]
\centering
- \includegraphics[scale=0.6]{fig/commtasks}
+ \includegraphics[scale=0.6]{fig/commtasks}
\caption{Parallel tasks on a heterogeneous platform}
\label{fig:heter}
\end{figure}