]> AND Private Git Repository - mpi-energy2.git/blobdiff - mpi-energy2-extension/Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
corrections
[mpi-energy2.git] / mpi-energy2-extension / Heter_paper.tex
index 85f68f4339cc0d41cd74dc25412f7936997d76d2..0973f102920fffb8b120050e6579f17d31a5ffc5 100644 (file)
@@ -395,8 +395,8 @@ where $N$ is the number of  clusters in the grid, $M_i$ is the number of  nodes
  cluster $i$, $\TcpOld[ij]$ is the computation time of processor $j$ in the cluster $i$ 
 and $\Tcm[hj]$ is the communication time of processor $j$ in the cluster $h$ during the 
 first  iteration.  The execution time for one iteration is equal to the sum of the maximum computation time for all nodes with the new scaling factors
-and the  communication time of the slower node without slack time during one iteration.
-The slower node $h$ is the node that gives the maximum execution time in all the clusters before applying DVFS.
+and the  communication time of the slowest node without slack time during one iteration.
+ The slowest node $h$ is the node which takes the  maximum execution time to execute an iteration  before scaling down its  frequency.
 It means that only the communication time without any slack time is taken into account.
 Therefore, the execution time of the  application is equal to
 the execution time of one iteration as in Equation (\ref{eq:perf}) multiplied by the
@@ -547,8 +547,8 @@ frequency scaling factors for a homogeneous and a heterogeneous cluster respecti
 Both methods selects the frequencies that gives the best trade-off between 
 energy consumption reduction and performance for  message passing
  synchronous applications \textcolor{blue}{with iterations}.   In this work we
-are interested in grids that are composed of heterogeneous clusters, \textcolor{blue}{where} the nodes 
-have different characteristics such  as  dynamic power, static power, computation power, 
+are interested in grids that are composed of heterogeneous clusters. The nodes from distinct clusters may have 
+ different characteristics such  as  dynamic power, static power, computation power, 
 frequencies range, network latency and bandwidth. 
 Due to the heterogeneity of the processors, a vector of scaling factors should be selected
 and it must give the best trade-off between energy consumption and performance.