]> AND Private Git Repository - mpi-energy2.git/blobdiff - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some corrections
[mpi-energy2.git] / Heter_paper.tex
index 38481afebc7ad3838eeca6bee2750f74d9647379..6684ee4ecc1f7f08c69858d4e1535a8e5352ea95 100644 (file)
@@ -138,7 +138,7 @@ Finally, in Section~\ref{sec.concl} the paper is ended with a summary and some f
 DVFS is a technique enabled 
 in modern processors to scale down both the voltage and the frequency of 
 the CPU while computing, in order to reduce the energy consumption of the processor. DVFS is 
-also  allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation.  Many researchers used different strategies to tackle this problem. Some of them developed online methods that compute the new frequency while executing the application, such as ~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}. Others used offline methods that might need to run the application and profile it before selecting the new frequency, such as ~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}. The methods could be heuristics, exact  or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform,  synchronous or asynchronous application, ... 
+also  allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation.  Many researchers used different strategies to tackle this problem. Some of them developed online methods that compute the new frequency while executing the application, such as ~\cite{Hao_Learning.based.DVFS,Spiliopoulos_Green.governors.Adaptive.DVFS}. Others used offline methods that might need to run the application and profile it before selecting the new frequency, such as ~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}. The methods could be heuristics, exact  or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform,  synchronous or asynchronous application, ... 
 
 In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
 Some works have already been done for such platforms and they can be classified into two types of heterogeneous platforms: 
@@ -448,11 +448,11 @@ normalized execution time is inverted which gives the normalized performance equ
 \begin{figure}
   \centering
   \subfloat[Homogeneous platform]{%
-    \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
+    \includegraphics[width=.30\textwidth]{fig/homo}\label{fig:r1}}%
   
   
   \subfloat[Heterogeneous platform]{%
-    \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
+    \includegraphics[width=.30\textwidth]{fig/heter}\label{fig:r2}}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure}
@@ -898,10 +898,10 @@ compared to the communication times.
 \begin{figure}
   \centering
   \subfloat[Energy saving]{%
-    \includegraphics[width=.33\textwidth]{fig/energy}\label{fig:energy}}%
+    \includegraphics[width=.30\textwidth]{fig/energy}\label{fig:energy}}%
   
   \subfloat[Performance degradation ]{%
-    \includegraphics[width=.33\textwidth]{fig/per_deg}\label{fig:per_deg}}
+    \includegraphics[width=.30\textwidth]{fig/per_deg}\label{fig:per_deg}}
   \label{fig:avg}
   \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
 \end{figure}
@@ -1023,7 +1023,7 @@ results in less energy saving but less performance degradation.
     \includegraphics[width=.30\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
 
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
-    \includegraphics[width=.34\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
+    \includegraphics[width=.30\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
@@ -1040,13 +1040,11 @@ They developed a green governor that regularly applies an online frequency selec
  To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al.  algorithm was adapted to  start the search from the 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 
-Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
-on average it results in 29.76\% energy saving while their algorithm returns just 25.75\%. The average of performance degradation percentage is approximately the same for both algorithms, about 4\%. 
+Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. \textcolor{red}{The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
+on average it is up to 17\% higher for  energy saving compared to their algorithm. The average of performance degradation percentage using our method is higher on average by 3.82\%. The positive values for  energy saving and distance are mean that our method outperform Spiliopoulos et al. method, while the inverse is happen for the negative values. The negative values for performance degradation percentage are mean our method is has the less delay in time, while the positive values mean the inverse. }
 
 For all benchmarks, our algorithm outperforms 
-Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
-
-
+Spiliopoulos et al. algorithm in term of energy and performance tradeoff \textcolor{red}{(on average it has up to 21\% of distance)}, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
 \begin{table}[h]
  \caption{Comparing the proposed algorithm}
  \centering
@@ -1067,7 +1065,60 @@ Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see fi
 \end{table}
 
 
+\begin{table}[htb]
+  \caption{Comparing the proposed algorithm}
+  % title of Table
+  \centering
+  \begin{tabular}{|*{4}{l|}}
+    \hline
+    Program       & Energy      & Performance        & Distance\%    \\
+    name          & saving\%    & degradation\%      &              \\
+    \hline
+    CG            &13.31               &22.34                   &10.89       \\
+    \hline 
+    MG            &14.55               &71.39                   &6.29        \\
+   \hline
+    EP            &44.4                    &0.0                         &44.42        \\
+   \hline
+    LU            &-4.79               &-88.58                  &10.12     \\
+    \hline
+    BT                   &16.76                &22.33                   &15.07     \\
+   \hline
+    SP                   &20.52                &-46.64                  &43.37      \\
+   \hline
+    FT            &14.76               &-7.64                   &17.3     \\
+\hline 
+  \end{tabular}
+  \label{table:compare_EDP}
+\end{table}
 
+\begin{table}[htb]
+  \caption{Comparing the proposed algorithm}
+  % title of Table
+  \centering
+  \begin{tabular}{|*{4}{l|}}
+    \hline
+    Program       & Energy      & Performance        & Distance\%    \\
+    name          & saving\%    & degradation\%      &              \\
+    \hline
+    CG            &3.67                &1.3                     &2.37     \\
+    \hline 
+    MG            &4.29                &2.67                    &1.62     \\
+   \hline
+    EP            &8.68                &0.01                    &8.67     \\
+   \hline
+    LU            &-1.36           &-3.8                        &2.44     \\
+    \hline
+    BT                   &4.64         &1.44                    &3.2      \\
+   \hline
+    SP                   &4.21         &-2.43                   &6.64     \\
+   \hline
+    FT            &3.99                &-0.21                   &4.2
+    \\
+\hline 
+  \end{tabular}
+  \label{table:compare_EDP}
+\end{table}
 \begin{figure}[t]
   \centering
    \includegraphics[scale=0.5]{fig/compare_EDP.pdf}