-The need for more computing power is continually increasing. To partially satisfy this need, most supercomputers constructors just put more computing nodes in their platform. The resulting platform might achieve higher floating point operations per second (FLOPS), but the energy consumption and the heat dissipation are also increased. As an example, the chinese supercomputer Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 list \cite{TOP500_Supercomputers_Sites}. However, it was also the most power hungry platform with its over 3 millions cores consuming around 17.8 megawatts.
-Moreover, according to the U.S. annual energy outlook 2014
-\cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour
-was approximately equal to \$70.
-Therefore, the price of the energy consumed by the
-Tianhe-2 platform is approximately more than \$10 millions each year.
-The computing platforms must be more energy efficient and offer the highest number of FLOPS per watt possible, such as the TSUBAME-KFC at the GSIC center of Tokyo which
-became the top of the Green500 list in June 2014 \cite{Green500_List}.
-This heterogeneous platform executes more than four GFLOPS per watt.
-
- Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms, such as scheduling, DVFS, ... DVFS is a widely used process to reduce the energy
-consumption of a processor by lowering its frequency. \textbf{put a reference to DVFS} However, it also the reduces the number of FLOPS executed by the processor which might increase the execution time of the application running over that processor.
-Therefore, researchers used different optimization strategies to select the frequency that gives the best tradeoff between the energy reduction and
-performance degradation ratio.
-\textbf{you should talk about the first paper here and say that the algorithm was applied to a homogeneous platform then define what is a heterogeneous platform, you can take it from the firdt paragraph in section 3 }
-
-In this paper, a frequency selecting algorithm is proposed. It selects the vector of frequencies for a heterogeneous platform that runs a message passing iterative application, that gives the maximum energy reduction and minimum
-performance degradation ratio simultaneously. The algorithm has a very small
-overhead, works online and does not need any training or profiling.
+The need for more computing power is continually increasing. To partially
+satisfy this need, most supercomputers constructors just put more computing
+nodes in their platform. The resulting platforms might achieve higher floating
+point operations per second (FLOPS), but the energy consumption and the heat
+dissipation are also increased. As an example, the Chinese supercomputer
+Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 list
+\cite{TOP500_Supercomputers_Sites}. However, it was also the most power hungry
+platform with its over 3 million cores consuming around 17.8 megawatts.
+Moreover, according to the U.S. annual energy outlook 2014
+\cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour
+was approximately equal to \$70. Therefore, the price of the energy consumed by
+the Tianhe-2 platform is approximately more than \$10 million each year. The
+computing platforms must be more energy efficient and offer the highest number
+of FLOPS per watt possible, such as the L-CSC from the GSI Helmholtz Center
+which became the top of the Green500 list in November 2014 \cite{Green500_List}.
+This heterogeneous platform executes more than 5 GFLOPS per watt while consuming
+57.15 kilowatts.
+
+Besides platform improvements, there are many software and hardware techniques
+to lower the energy consumption of these platforms, such as scheduling, DVFS,
+\dots{} DVFS is a widely used process to reduce the energy consumption of a
+processor by lowering its frequency
+\cite{Rizvandi_Some.Observations.on.Optimal.Frequency}. However, it also reduces
+the number of FLOPS executed by the processor which might increase the execution
+time of the application running over that processor. Therefore, researchers use
+different optimization strategies to select the frequency that gives the best
+trade-off between the energy reduction and performance degradation ratio. In
+\cite{Our_first_paper}, a frequency selecting algorithm was proposed to reduce
+the energy consumption of message passing iterative applications running over
+homogeneous platforms. The results of the experiments show significant energy
+consumption reductions. In this paper, a new frequency selecting algorithm
+adapted for heterogeneous platform is presented. It selects the vector of
+frequencies, for a heterogeneous platform running a message passing iterative
+application, that simultaneously tries to offer the maximum energy reduction and
+minimum performance degradation ratio. The algorithm has a very small overhead,
+works online and does not need any training or profiling.