consumption. However, lowering the frequency of a CPU might increase the
execution time of an application running on that processor. Therefore, the
frequency that gives the best trade-off between the energy consumption and the
-performance of an application must be selected.\\
-In this paper, a new online frequencies selecting algorithm for heterogeneous
-platforms is presented. It selects the frequency which tries to give the best
+performance of an application must be selected.
+
+In this paper, a new online frequency selecting algorithm for heterogeneous
+platforms is presented. It selects the frequencies and tries to give the best
trade-off between energy saving and performance degradation, for each node
computing the message passing iterative application. The algorithm has a small
overhead and works without training or profiling. It uses a new energy model for
\caption{Heterogeneous nodes characteristics}
% title of Table
\centering
- \begin{tabular}{|*{7}{l|}}
+ \begin{tabular}{|*{7}{r|}}
\hline
Node &Simulated & Max & Min & Diff. & Dynamic & Static \\
type &GFLOPS & Freq. & Freq. & Freq. & power & power \\
& & GHz & GHz &GHz & & \\
\hline
- 1 &40 & 2.5 & 1.2 & 0.1 & 20~W &4~W \\
+ 1 &40 & 2.50 & 1.20 & 0.100 & \np[W]{20} &\np[W]{4} \\
\hline
- 2 &50 & 2.66 & 1.6 & 0.133 & 25~W &5~W \\
+ 2 &50 & 2.66 & 1.60 & 0.133 & \np[W]{25} &\np[W]{5} \\
\hline
- 3 &60 & 2.9 & 1.2 & 0.1 & 30~W &6~W \\
+ 3 &60 & 2.90 & 1.20 & 0.100 & \np[W]{30} &\np[W]{6} \\
\hline
- 4 &70 & 3.4 & 1.6 & 0.133 & 35~W &7~W \\
+ 4 &70 & 3.40 & 1.60 & 0.133 & \np[W]{35} &\np[W]{7} \\
\hline
\end{tabular}