+For all benchmarks, our algorithm outperforms Spiliopoulos et al. algorithm in
+terms of energy and performance tradeoff, see figure (\ref{fig:compare_EDP}),
+because it maximizes the distance between the energy saving and the performance
+degradation values while giving the same weight for both metrics.
+
+
+
+
+\begin{table}[!t]
+ \caption{Comparing the proposed algorithm}
+ \centering
+\begin{tabular}{|l|l|l|l|l|l|l|l|}
+\hline
+\multicolumn{2}{|l|}{\multirow{2}{*}{\begin{tabular}[c]{@{}l@{}}Program \\ name\end{tabular}}} & \multicolumn{2}{l|}{Energy saving \%} & \multicolumn{2}{l|}{Perf. degradation \%} & \multicolumn{2}{l|}{Distance} \\ \cline{3-8}
+\multicolumn{2}{|l|}{} & EDP & MaxDist & EDP & MaxDist & EDP & MaxDist \\ \hline
+\multicolumn{2}{|l|}{CG} & 27.58 & 31.25 & 5.82 & 7.12 & 21.76 & 24.13 \\ \hline
+\multicolumn{2}{|l|}{MG} & 29.49 & 33.78 & 3.74 & 6.41 & 25.75 & 27.37 \\ \hline
+\multicolumn{2}{|l|}{LU} & 19.55 & 28.33 & 0.0 & 0.01 & 19.55 & 28.22 \\ \hline
+\multicolumn{2}{|l|}{EP} & 28.40 & 27.04 & 4.29 & 0.49 & 24.11 & 26.55 \\ \hline
+\multicolumn{2}{|l|}{BT} & 27.68 & 32.32 & 6.45 & 7.87 & 21.23 & 24.43 \\ \hline
+\multicolumn{2}{|l|}{SP} & 20.52 & 24.73 & 5.21 & 2.78 & 15.31 & 21.95 \\ \hline
+\multicolumn{2}{|l|}{FT} & 27.03 & 31.02 & 2.75 & 2.54 & 24.28 & 28.48 \\ \hline
+
+\end{tabular}
+\label{table:compare_EDP}
+\end{table}
+
+
+
+
+
+\begin{figure}[!t]
+ \centering
+ \includegraphics[scale=0.5]{fig/compare_EDP.pdf}
+ \caption{Tradeoff comparison for NAS benchmarks class C}
+ \label{fig:compare_EDP}
+\end{figure}
+
+
+\section{Conclusion}
+\label{sec.concl}
+In this paper, a new online frequency selecting algorithm has been presented. It
+selects the best possible vector of frequency scaling factors that gives the
+maximum distance (optimal tradeoff) between the predicted energy and the
+predicted performance curves for a heterogeneous platform. This algorithm uses a
+new energy model for measuring and predicting the energy of distributed
+iterative applications running over heterogeneous platforms. To evaluate the
+proposed method, it was applied on the NAS parallel benchmarks and executed over
+a heterogeneous platform simulated by Simgrid. The results of the experiments
+showed that the algorithm reduces up to 35\% the energy consumption of a message
+passing iterative method while limiting the degradation of the performance. The
+algorithm also selects different scaling factors according to the percentage of
+the computing and communication times, and according to the values of the static
+and dynamic powers of the CPUs. Finally, the algorithm was compared to
+Spiliopoulos et al. algorithm and the results showed that it outperforms their
+algorithm in terms of energy-time tradeoff.
+
+In the near future, this method will be applied to real heterogeneous platforms
+to evaluate its performance in a real study case. It would also be interesting
+to evaluate its scalability over large scale heterogeneous platforms and measure
+the energy consumption reduction it can produce. Afterward, we would like to
+develop a similar method that is adapted to asynchronous iterative applications
+where each task does not wait for other tasks to finish their works. The
+development of such a method might require a new energy model because the number
+of iterations is not known in advance and depends on the global convergence of
+the iterative system.