+The NAS parallel benchmarks are executed over these two platforms
+ with different number of nodes, as in Table~\ref{tab:sc}.
+The overall energy consumption of all the benchmarks solving the class D instance and
+using the proposed frequency selection algorithm is measured
+using the equation of the reduced energy consumption, Equation~\ref{eq:energy}. This model uses the measured dynamic power showed in Table~\ref{table:grid5000}
+and the static
+power is assumed to be equal to 20\% of the dynamic power \textcolor{blue}{as in \cite{Rauber_Analytical.Modeling.for.Energy}}. The execution
+time is measured for all the benchmarks over these different scenarios.
+
+The energy consumptions and the execution times for all the benchmarks are
+presented in Figures~\ref{fig:eng_sen} and \ref{fig:time_sen} respectively.
+
+For the majority of the benchmarks, the energy consumed while executing the NAS benchmarks over one site scenario
+for 16 and 32 nodes is lower than the energy consumed while using two sites.
+The long distance communications between the two distributed sites increase the idle time, which leads to more static energy consumption.
+
+The execution times of these benchmarks
+over one site with 16 and 32 nodes are also lower than those of the two sites
+scenario. Moreover, most of the benchmarks running over the one site scenario have their execution times approximately halved when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).
+
+However, the execution times and the energy consumptions of the EP and MG
+benchmarks, which have no or small communications, are not significantly
+affected in both scenarios, even when the number of nodes is doubled. On the
+other hand, the communication times of the rest of the benchmarks increase when
+using long distance communications between two sites or when increasing the number of
+computing nodes.
+
+
+The energy saving percentage is computed as the ratio between the reduced
+energy consumption, Equation~\ref{eq:energy}, and the original energy consumption,
+Equation~\ref{eq:eorginal}, for all benchmarks as in Figure~\ref{fig:eng_s}.
+This figure shows that the energy saving percentages of one site scenario for
+16 and 32 nodes are bigger than those of the two sites scenario which is due
+to the higher computations to communications ratio in the first scenario
+than in the second one. Moreover, the frequency selecting algorithm selects smaller frequencies when the computation times are bigger than the communication times which
+results in a lower energy consumption. Indeed, the dynamic consumed power
+is exponentially related to the CPU's frequency value. On the other hand, the increase in the number of computing nodes can
+increase the communication times and thus produces less energy saving depending on the
+benchmarks being executed. The results of benchmarks CG, MG, BT and FT show more
+energy saving percentage in the one site scenario when executed over 16 nodes than over 32 nodes. LU and SP consume more energy with 16 nodes than 32 in one site because their computations to communications ratio is not affected by the increase of the number of local communications.
+
+\begin{figure*}[!h]
+ \centering
+ \subfloat[The energy reduction while executing the NAS benchmarks over different scenarios ]{%
+ \includegraphics[width=.48\textwidth]{fig/eng_s.eps}\label{fig:eng_s}} \hspace{0.4cm}%
+ \subfloat[The performance degradation of the NAS benchmarks over different scenarios]{%
+ \includegraphics[width=.48\textwidth]{fig/per_d.eps}\label{fig:per_d}}\hspace{0.4cm}%
+ \subfloat[The trade-off distance between the energy reduction and the performance of the NAS benchmarks
+ over different scenarios]{%
+ \includegraphics[width=.48\textwidth]{fig/dist.eps}\label{fig:dist}}
+ \label{fig:exp-res}
+ \caption{The experimental results of different scenarios}
+\end{figure*}
+
+
+
+The energy saving percentage is reduced for all the benchmarks because of the long distance communications in the two sites
+scenario, except for the EP benchmark which has no communication. Therefore, the energy saving percentage of this benchmark is
+dependent on the maximum difference between the computing powers of the heterogeneous computing nodes, for example
+in the one site scenario, the graphite cluster is selected but in the two sites scenario
+this cluster is replaced with the Taurus cluster which is more powerful.
+Therefore, the energy savings of the EP benchmark are bigger in the two sites scenario due
+to the higher maximum difference between the computing powers of the nodes.
+
+In fact, high differences between the nodes' computing powers make the proposed frequencies selecting
+algorithm select smaller frequencies for the powerful nodes which
+produces less energy consumption and thus more energy saving.
+The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
+
+
+Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios.
+The performance degradation percentage for the benchmarks running on two sites with
+16 or 32 nodes is on average equal to 8.3\% or 4.7\% respectively.
+For this scenario, the proposed scaling algorithm selects smaller frequencies for the executions with 32 nodes without significantly degrading their performance because the communication times are higher with 32 nodes which results in smaller computations to communications ratio. On the other hand, the performance degradation percentage for the benchmarks running on one site with
+16 or 32 nodes is on average equal to 3.2\% and 10.6\% respectively. In contrary to the two sites scenario, when the number of computing nodes is increased in the one site scenario, the performance degradation percentage is increased. Therefore, doubling the number of computing
+nodes when the communications occur in high speed network does not decrease the computations to
+communication ratio.
+
+The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to
+the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its
+performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes.
+The rest of the benchmarks showed different performance degradation percentages which decrease
+when the communication times increase and vice versa.
+
+Figure \ref{fig:dist} presents the distance percentage between the energy saving and the performance degradation for each benchmark over both scenarios. The trade-off distance percentage can be
+computed as in Equation~\ref{eq:max}. The one site scenario with 16 nodes gives the best energy and performance
+trade-off, on average it is equal to 26.8\%. The one site scenario using both 16 and 32 nodes had better energy and performance
+trade-off comparing to the two sites scenario because the former has high speed local communications
+which increase the computations to communications ratio and the latter uses long distance communications which decrease this ratio.
+
+ Finally, the best energy and performance trade-off depends on all of the following:
+1) the computations to communications ratio when there are communications and slack times, 2) the heterogeneity of the computing powers of the nodes and 3) the heterogeneity of the consumed static and dynamic powers of the nodes.
+
+
+
+
+\subsection{The experimental results over multi-core clusters}
+\label{sec.res-mc}
+
+The clusters of Grid'5000 have different number of cores embedded in their nodes
+as shown in Table~\ref{table:grid5000}. In
+this section, the proposed scaling algorithm is evaluated over the Grid'5000 platform while using multi-cores nodes selected according to the one site scenario described in Section~\ref{sec.res}.
+The one site scenario uses 32 cores from multi-core nodes instead of 32 distinct nodes. For example if
+the participating number of cores from a certain cluster is equal to 14,
+in the multi-core scenario 4 nodes are selected and
+3 or 4 cores from each node are used. The platforms with one
+core per node and multi-core nodes are shown in Table~\ref{table:sen-mc}.
+The energy consumptions and execution times of running the class D of the NAS parallel
+benchmarks over these two different platforms are presented
+in Figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively.
+
+
+\begin{table}[!h]
+\centering
+\caption{The multi-core scenarios}
+\begin{tabular}{|*{4}{c|}}
+\hline
+Scenario name & Cluster name & Nodes per cluster &
+ Cores per node \\ \hline
+\multirow{3}{*}{One core per node} & Graphite & 4 & 1 \\ \cline{2-4}
+ & Graphene & 14 & 1 \\ \cline{2-4}
+ & Griffon & 14 & 1 \\ \hline
+\multirow{3}{*}{Multi-core per node} & Graphite & 1 & 4 \\ \cline{2-4}
+ & Graphene & 4 & 3 or 4 \\ \cline{2-4}
+ & Griffon & 4 & 3 or 4 \\ \hline
+\end{tabular}
+\label{table:sen-mc}
+\end{table}
+
+
+\begin{figure}[!h]
+ \centering
+ \subfloat[Comparing the execution times of running the NAS benchmarks over one core and multi-core scenarios]{%
+ \includegraphics[width=.48\textwidth]{fig/time.eps}\label{fig:time-mc}} \hspace{0.4cm}%
+ \subfloat[Comparing the energy consumptions of running the NAS benchmarks over one core and multi-core scenarios]{%
+ \includegraphics[width=.48\textwidth]{fig/eng_con.eps}\label{fig:eng-cons-mc}}
+ \label{fig:eng-cons}
+ \caption{The energy consumptions and execution times of the NAS benchmarks running over one core and multi-core per node architectures}
+\end{figure}