-In this section, we compare our scaling factors selection algorithm
-with Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}.
-They developed an online frequency selecting algorithm running over multicore architecture.
-The algorithm predicted both the energy and performance during the runtime of the program, then
-selecting the frequencies that minimized the energy and delay products (EDP), $EDP=Enegry * Delay$.
-To be able to compare with this algorithm, we used our energy and execution time models in prediction process,
-equations (\ref{eq:energy}) and (\ref{eq:fnew}). Also their algorithm is adapted to taking into account
-the heterogeneous platform to starts selecting the
-initial frequencies using the equation (\ref{eq:Fint}). The algorithm built to test all possible frequencies as
-a brute-force search algorithm.
-
-The comparison results of running NAS benchmarks class C on 8 or 9 nodes are
-presented in table \ref{table:compare_EDP}. The results show that our algorithm has a biggest energy saving percentage,
-on average it has 29.76\% and thier algorithm has 25.75\%,
-while the average of performance degradation percentage is approximately the same, the average for our algorithm is
-equal to 3.89\% and for their algorithm is equal to 4.03\%. In general, our algorithm outperforms
-Spiliopoulos et al. algorithm in term of energy and performance tradeoff see figure (\ref{fig:compare_EDP}).
-This because our algorithm maximized the difference (the distance) between the energy saving and the performance degradation
-comparing to their EDP optimization function. It is also keeps the frequency of the slowest node without change
-that gave some enhancements to the energy and performance tradeoff.
-
-
-\begin{table}[h]
- \caption{Comparing the proposed algorithm}
- \centering
-\begin{tabular}{|l|l|l|l|l|l|l|l|}
-\hline
-\multicolumn{2}{|l|}{\multirow{2}{*}{\begin{tabular}[c]{@{}l@{}}Program \\ name\end{tabular}}} & \multicolumn{2}{l|}{Energy saving \%} & \multicolumn{2}{l|}{Perf. degradation \%} & \multicolumn{2}{l|}{Distance} \\ \cline{3-8}
-\multicolumn{2}{|l|}{} & EDP & MaxDist & EDP & MaxDist & EDP & MaxDist \\ \hline
-\multicolumn{2}{|l|}{CG} & 27.58 & 31.25 & 5.82 & 7.12 & 21.76 & 24.13 \\ \hline
-\multicolumn{2}{|l|}{MG} & 29.49 & 33.78 & 3.74 & 6.41 & 25.75 & 27.37 \\ \hline
-\multicolumn{2}{|l|}{LU} & 19.55 & 28.33 & 0.0 & 0.01 & 19.55 & 28.22 \\ \hline
-\multicolumn{2}{|l|}{EP} & 28.40 & 27.04 & 4.29 & 0.49 & 24.11 & 26.55 \\ \hline
-\multicolumn{2}{|l|}{BT} & 27.68 & 32.32 & 6.45 & 7.87 & 21.23 & 24.43 \\ \hline
-\multicolumn{2}{|l|}{SP} & 20.52 & 24.73 & 5.21 & 2.78 & 15.31 & 21.95 \\ \hline
-\multicolumn{2}{|l|}{FT} & 27.03 & 31.02 & 2.75 & 2.54 & 24.28 & 28.48 \\ \hline
-
-\end{tabular}
-\label{table:compare_EDP}
-\end{table}
+In this section, the scaling factors selection algorithm
+is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}.
+They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
+ To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to start the search from the
+initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
+
+Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP} presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. \textcolor{red}{The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm,
+on average it is up to 17\% higher for energy saving compared to their algorithm. The average of performance degradation percentage using our method is higher on average by 3.82\%. The positive values for energy saving and distance are mean that our method outperform Spiliopoulos et al. method, while the inverse is happen for the negative values. The negative values for performance degradation percentage are mean our method is has the less delay in time, while the positive values mean the inverse. }
+
+For all benchmarks, our algorithm outperforms
+Spiliopoulos et al. algorithm in term of energy and performance tradeoff \textcolor{red}{(on average it has up to 21\% of distance)}, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics.
+