-Since the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors)
-in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm
-that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with
-different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical
-and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time:
-for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in
-table~(\ref{table:platform}), it takes on average \np[ms]{0.04} for 4 nodes and \np[ms]{0.15} on average for 144 nodes
-to compute the best scaling factors vector. The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number
-of iterations and $N$ is the number of computing nodes. The algorithm needs from 12 to 20 iterations to select the best
-vector of frequency scaling factors that gives the results of the sections (\ref{sec.res}) and (\ref{sec.compare}) .
+\subsection{The comparison of the proposed scaling algorithm }
+\label{sec.compare_EDP}
+
+In this section, the scaling factors selection algorithm
+is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}.
+They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
+ To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to start the search from the
+initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
+
+Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP} presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. \textcolor{red}{The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm,
+on average it is up to 17\% higher for energy saving compared to their algorithm. The average of performance degradation percentage using our method is higher on average by 3.82\%. The positive values for energy saving and distance are mean that our method outperform Spiliopoulos et al. method, while the inverse is happen for the negative values. The negative values for performance degradation percentage are mean our method is has the less delay in time, while the positive values mean the inverse. }
+
+For all benchmarks, our algorithm outperforms
+Spiliopoulos et al. algorithm in term of energy and performance tradeoff \textcolor{red}{(on average it has up to 21\% of distance)}, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics.
+\begin{table}[h]
+ \caption{Comparing the proposed algorithm}
+ \centering
+\begin{tabular}{|l|l|l|l|l|l|l|l|}
+\hline
+\multicolumn{2}{|l|}{\multirow{2}{*}{\begin{tabular}[c]{@{}l@{}}Program \\ name\end{tabular}}} & \multicolumn{2}{l|}{Energy saving \%} & \multicolumn{2}{l|}{Perf. degradation \%} & \multicolumn{2}{l|}{Distance} \\ \cline{3-8}
+\multicolumn{2}{|l|}{} & EDP & MaxDist & EDP & MaxDist & EDP & MaxDist \\ \hline
+\multicolumn{2}{|l|}{CG} & 27.58 & 31.25 & 5.82 & 7.12 & 21.76 & 24.13 \\ \hline
+\multicolumn{2}{|l|}{MG} & 29.49 & 33.78 & 3.74 & 6.41 & 25.75 & 27.37 \\ \hline
+\multicolumn{2}{|l|}{LU} & 19.55 & 28.33 & 0.0 & 0.01 & 19.55 & 28.22 \\ \hline
+\multicolumn{2}{|l|}{EP} & 28.40 & 27.04 & 4.29 & 0.49 & 24.11 & 26.55 \\ \hline
+\multicolumn{2}{|l|}{BT} & 27.68 & 32.32 & 6.45 & 7.87 & 21.23 & 24.43 \\ \hline
+\multicolumn{2}{|l|}{SP} & 20.52 & 24.73 & 5.21 & 2.78 & 15.31 & 21.95 \\ \hline
+\multicolumn{2}{|l|}{FT} & 27.03 & 31.02 & 2.75 & 2.54 & 24.28 & 28.48 \\ \hline
+
+\end{tabular}
+\label{table:compare_EDP}
+\end{table}
+
+
+\begin{table}[htb]
+ \caption{Comparing the proposed algorithm}
+ % title of Table
+ \centering
+ \begin{tabular}{|*{4}{l|}}
+ \hline
+ Program & Energy & Performance & Distance\% \\
+ name & saving\% & degradation\% & \\
+ \hline
+ CG &13.31 &22.34 &10.89 \\
+ \hline
+ MG &14.55 &71.39 &6.29 \\
+ \hline
+ EP &44.4 &0.0 &44.42 \\
+ \hline
+ LU &-4.79 &-88.58 &10.12 \\
+ \hline
+ BT &16.76 &22.33 &15.07 \\
+ \hline
+ SP &20.52 &-46.64 &43.37 \\
+ \hline
+ FT &14.76 &-7.64 &17.3 \\
+\hline
+ \end{tabular}
+ \label{table:compare_EDP}
+\end{table}
+
+\begin{table}[htb]
+ \caption{Comparing the proposed algorithm}
+ % title of Table
+ \centering
+ \begin{tabular}{|*{4}{l|}}
+ \hline
+ Program & Energy & Performance & Distance\% \\
+ name & saving\% & degradation\% & \\
+ \hline
+ CG &3.67 &1.3 &2.37 \\
+ \hline
+ MG &4.29 &2.67 &1.62 \\
+ \hline
+ EP &8.68 &0.01 &8.67 \\
+ \hline
+ LU &-1.36 &-3.8 &2.44 \\
+ \hline
+ BT &4.64 &1.44 &3.2 \\
+ \hline
+ SP &4.21 &-2.43 &6.64 \\
+ \hline
+ FT &3.99 &-0.21 &4.2
+ \\
+\hline
+ \end{tabular}
+ \label{table:compare_EDP}
+\end{table}
+\begin{figure}[t]
+ \centering
+ \includegraphics[scale=0.5]{fig/compare_EDP.pdf}
+ \caption{Tradeoff comparison for NAS benchmarks class C}
+ \label{fig:compare_EDP}
+\end{figure}
+