-In this section, we compare our scaling factors selection algorithm
-with Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}.
-They developed an online frequency selecting algorithm running over multicore architecture.
-The algorithm predicted both the energy and performance during the runtime of the program, then
-selecting the frequencies that minimized the energy and delay products (EDP), $EDP=Enegry*Delay$.
-To be able to compare with this algorithm, we used our energy and execution time models in prediction process,
-equations (\ref{eq:energy}) and (\ref{eq:fnew}). Also their algorithm is adapted to taking into account
-the heterogeneous platform to starts selecting the
-initial frequencies using the equation (\ref{eq:Fint}). The algorithm built to test all possible frequencies as
-a brute-force search algorithm.
-
-The comparison results of running NAS benchmarks class C on 8 or 9 nodes are
-presented in table \ref{table:compare_EDP}. The results show that our algorithm has a biggest energy saving percentage,
-on average it has 29.76\% and thier algorithm has 25.75\%,
-while the average of performance degradation percentage is approximately the same, the average for our algorithm is
-equal to 3.89\% and for their algorithm is equal to 4.03\%. In general, our algorithm outperforms
-Spiliopoulos et al. algorithm in term of energy and performance tradeoff see figure (\ref{fig:compare_EDP}).
-This because our algorithm maximized the difference (the distance) between the energy saving and the performance degradation
-comparing to their EDP optimization function. It is also keeps the frequency of the slowest node without change
-that gave some enhancements to the energy and performance tradeoff.