-\textcolor{blue}{
-The tradeoff between the energy consumption and the performance of the parallel
-applications had significant importance in the domain of the research.
-Many researchers, \cite{EDP_for_multi_processors,Energy_aware_application_scheduling,Exploring_Energy_Performance_TradeOffs},
-have optimized the tradeoff between the energy and the performance using the well known energy and delay product, $EDP=energy \times delay$.
-This model is also used by Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS},
-the objective is to select the frequencies that minimized EDP product for the multi-cores
-architecture when DVFS is used. Moreover, their algorithm is applied online, which synchronously optimized the energy consumption
-and the execution time. Both energy consumption and execution time of a processor are predicted by the their algorithm.
-In this section the proposed frequencies selection algorithm, called Maxdist is compared with Spiliopoulos et al. algorithm, called EDP.
-To make both of the algorithms follow the same direction and fairly comparing them, the same energy model, equation \ref{eq:energy} and
-the execution time model, equation \ref{eq:perf}, are used in the prediction process to select the best vector of the frequencies.
-In contrast, the proposed algorithm starts the search space from the lower bound computed as in equation the \ref{eq:Fint}. Also, the algorithm
-stops the search process when it is reached to the lower bound as mentioned before. In the same way, the EDP algorithm is developed to start from the
-same upper bound used in Maxdist algorithm, and it stops the search process when a minimum available frequencies is reached.
-Finally, the resulting EDP algorithm is an exhaustive search algorithm that test all possible frequencies, starting from the initial frequencies,
-and selecting those minimized the EDP product.
-Both algorithms were applied to NAS benchmarks, class D, over 16 nodes selected from grid'5000 clusters.
-The participating computing nodes are distributed between two sites and one site to have two different scenarios that used in the section \ref{sec.res}.
-The experimental results: the energy saving, performance degradation and tradeoff distance percentages are
+
+Finding the frequencies that gives the best tradeoff between the energy consumption and the performance for a parallel
+application is not a trivial task. Many algorithms have been proposed to tackle this problem.
+In this section, the proposed frequencies selecting algorithm is compared to well known energy and delay product method, $EDP=energy \times delay$, that have been used by many researchers \cite{EDP_for_multi_processors,Energy_aware_application_scheduling,Exploring_Energy_Performance_TradeOffs}.
+This method was also used by Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS} where they select the frequencies that minimize the EDP product and apply them with DVFS operations to the multi-cores
+architecture. Their online algorithm predicts the energy consumption and execution time of a processor before using the EDP method.
+
+To fairly compare the proposed frequencies scaling algorithm to Spiliopoulos et al. algorithm, called Maxdist and EDP respectively, both algorithms use the same energy model, equation \ref{eq:energy} and
+execution time model, equation \ref{eq:perf}, to predict the energy consumption and the execution time for each computing node.
+Moreover, both algorithms start the search space from the upper bound computed as in equation \ref{eq:Fint}.
+Finally, the resulting EDP algorithm is an exhaustive search algorithm that tests all the possible frequencies, starting from the initial frequencies (upper bound),
+and selects the vector of frequencies that minimize the EDP product.
+
+Both algorithms were applied to the class D of the NAS benchmarks over 16 nodes.
+The participating computing nodes are distributed according to the two scenarios described in section \ref{sec.res}.
+The experimental results, the energy saving, performance degradation and tradeoff distance percentages, are