-scenarios because there are no or small communications,
-which could increase or decrease the static power consumptions. Contrary to EP and MG, the energy consumptions and the execution times of the rest of the benchmarks vary according to the communication times that are different from one scenario to the other.
-The energy saving percentages of all NAS benchmarks running over these two scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that the energy saving percentages in the one site one
-core and one site multi-cores scenarios
-are approximately equivalent, on average they are equal to 25.9\% and 25.1\% respectively. In both scenarios there
-are a small difference in the computations to communications ratios, which leads
-the proposed scaling algorithm to select similar frequencies for both scenarios.
+scenarios because there are no or small communications. Contrary to EP and MG, the energy consumptions and the execution times of the rest of the benchmarks vary according to the communication times that are different from one scenario to the other.
+
+
+The energy saving percentages of all NAS benchmarks running over these two scenarios are presented in the figure \ref{fig:eng-s-mc}.
+The figure shows that the energy saving percentages in the one
+core and the multi-cores scenarios
+are approximately equivalent, on average they are equal to 25.9\% and 25.1\% respectively.
+The energy consumption is reduced at the same rate in the two scenarios when compared to the energy consumption of the executions without DVFS.
+
+