-The NAS parallel benchmarks were executed again over processors that follow the new power scenarios.
-The class C of each benchmark was run over 8 or 9 nodes and the results are presented in Tables
-\ref{table:res_s1} and \ref{table:res_s2}. These tables show that the energy saving percentage of the 70\%-30\%
-scenario is less for all benchmarks compared to the energy saving of the 90\%-10\% scenario. Indeed, in the latter
-more dynamic power is consumed when nodes are running on their maximum frequencies, thus, scaling down the frequency
-of the nodes results in higher energy savings than in the 70\%-30\% scenario. On the other hand, the performance
-degradation percentage is less in the 70\%-30\% scenario compared to the 90\%-10\% scenario. This is due to the
-higher static power percentage in the first scenario which makes it more relevant in the overall consumed energy.
-Indeed, the static energy is related to the execution time and if the performance is degraded the total consumed
-static energy is directly increased. Therefore, the proposed algorithm do not scales down much the frequencies of the
-nodes in order to limit the increase of the execution time and thus limiting the effect of the consumed static energy.
-
-The two new power scenarios are compared to the old one in figure (\ref{fig:sen_comp}). It shows the average of
-the performance degradation, the energy saving and the distances for all NAS benchmarks of class C running on 8 or 9 nodes.
-The comparison shows that the energy saving ratio is proportional to the dynamic power ratio: it is increased
-when applying the 90\%-10\% scenario because at maximum frequency the dynamic energy is the most relevant
-in the overall consumed energy and can be reduced by lowering the frequency of some processors. On the other hand,
-the energy saving is decreased when the 70\%-30\% scenario is used because the dynamic energy is less relevant in
-the overall consumed energy and lowering the frequency do not returns big energy savings.
-Moreover, the average of the performance degradation is decreased when using a higher ratio for static power
-(e.g. 70\%-30\% scenario and 80\%-20\% scenario). Since the proposed algorithm optimizes the energy consumption
-when using a higher ratio for dynamic power the algorithm selects bigger frequency scaling factors that result in
-more energy saving but less performance, for example see the figure (\ref{fig:scales_comp}). The opposite happens
-when using a higher ratio for static power, the algorithm proportionally selects smaller scaling values which
-results in less energy saving but less performance degradation.
-
-
- \begin{table}[htb]
- \caption{The results of 70\%-30\% powers scenario}
+The NAS parallel benchmarks were executed again over processors that follow the
+new power scenarios. The class C of each benchmark was run over 8 or 9 nodes
+and the results are presented in Tables \ref{table:res_s1} and
+\ref{table:res_s2}. These tables show that the energy saving percentage of the
+70\%-30\% scenario is smaller for all benchmarks compared to the energy saving
+of the 90\%-10\% scenario. Indeed, in the latter more dynamic power is consumed
+when nodes are running on their maximum frequencies, thus, scaling down the
+frequency of the nodes results in higher energy savings than in the 70\%-30\%
+scenario. On the other hand, the performance degradation percentage is smaller
+in the 70\%-30\% scenario compared to the 90\%-10\% scenario. This is due to the
+higher static power percentage in the first scenario which makes it more
+relevant in the overall consumed energy. Indeed, the static energy is related
+to the execution time and if the performance is degraded the amount of consumed
+static energy directly increas. Therefore, the proposed algorithm does not
+really significantly scale down much the frequencies of the nodes in order to
+limit the increase of the execution time and thus limiting the effect of the
+consumed static energy.
+
+Both new power scenarios are compared to the old one in figure
+(\ref{fig:sen_comp}). It shows the average of the performance degradation, the
+energy saving and the distances for all NAS benchmarks of class C running on 8
+or 9 nodes. The comparison shows that the energy saving ratio is proportional
+to the dynamic power ratio: it is increased when applying the 90\%-10\% scenario
+because at maximum frequency the dynamic energy is the most relevant in the
+overall consumed energy and can be reduced by lowering the frequency of some
+processors. On the other hand, the energy saving decreases when the 70\%-30\%
+scenario is used because the dynamic energy is less relevant in the overall
+consumed energy and lowering the frequency does not return big energy savings.
+Moreover, the average of the performance degradation is decreased when using a
+higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\%
+scenario). Since the proposed algorithm optimizes the energy consumption when
+using a higher ratio for dynamic power the algorithm selects bigger frequency
+scaling factors that result in more energy saving but less performance, for
+example see Figure (\ref{fig:scales_comp}). The opposite happens when using a
+higher ratio for static power, the algorithm proportionally selects smaller
+scaling values which result in less energy saving but also less performance
+degradation.
+
+
+ \begin{table}[!t]
+ \caption{The results of the 70\%-30\% power scenario}