]> AND Private Git Repository - mpi-energy2.git/blobdiff - Heter_paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some corrections
[mpi-energy2.git] / Heter_paper.tex
index 7aeae75b4f3563125a0a76bbcc1e276be74635dc..29ff85bd56a5c8548a6d614c1fc8129d07b35cb1 100644 (file)
@@ -1020,10 +1020,10 @@ results in less energy saving but less performance degradation.
 \begin{figure}
   \centering
   \subfloat[Comparison  of the results on 8 nodes]{%
 \begin{figure}
   \centering
   \subfloat[Comparison  of the results on 8 nodes]{%
-    \includegraphics[width=.30\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
+    \includegraphics[width=.33\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
 
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
 
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
-    \includegraphics[width=.34\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
+    \includegraphics[width=.33\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
@@ -1033,18 +1033,20 @@ results in less energy saving but less performance degradation.
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
-
 In this section, the scaling  factors selection algorithm
 is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}. 
 They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
 In this section, the scaling  factors selection algorithm
 is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}. 
 They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
- To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al.  algorithm was adapted to  start the search from the 
+To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to  start the search from the 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 
-Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
+Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
 on average it results in 29.76\% energy saving while their algorithm returns just 25.75\%. The average of performance degradation percentage is approximately the same for both algorithms, about 4\%. 
 
 on average it results in 29.76\% energy saving while their algorithm returns just 25.75\%. The average of performance degradation percentage is approximately the same for both algorithms, about 4\%. 
 
+
 For all benchmarks, our algorithm outperforms 
 For all benchmarks, our algorithm outperforms 
-Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
+Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see figure (\ref{fig:compare_EDP}), because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
+
+
 
 
 \begin{table}[h]
 
 
 \begin{table}[h]
@@ -1068,6 +1070,8 @@ Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see fi
 
 
 
 
 
 
+
+
 \begin{figure}[t]
   \centering
    \includegraphics[scale=0.5]{fig/compare_EDP.pdf}
 \begin{figure}[t]
   \centering
    \includegraphics[scale=0.5]{fig/compare_EDP.pdf}