-These experiments also showed that the energy
-consumption and the execution times of the EP and MG benchmarks do not change significantly over these four
-scenarios because there are no or small communications,
-which could increase or decrease the static power consumptions. Contrary to EP and MG, the energy consumptions
-and the execution times of the rest of the benchmarks vary according to the communication times that are different from one scenario to the other.
-
-
-The energy saving percentages of all NAS benchmarks running over these four scenarios are presented in the figure \ref{fig:eng-s-mc}. It shows that the energy saving percentages over the two sites multi-cores scenario
-and over the two sites one core scenario are on average equal to 22\% and 18\%
-respectively. The energy saving percentages are higher in the former scenario because its computations to communications ratio is higher than the ratio of the latter scenario as mentioned previously.
-
-In contrast, in the one site one
-core and one site multi-cores scenarios the energy saving percentages
-are approximately equivalent, on average they are up to 25\%. In both scenarios there
-are a small difference in the computations to communications ratios, which leads
-the proposed scaling algorithm to select similar frequencies for both scenarios.
-
-The performance degradation percentages of the NAS benchmarks are presented in
-figure \ref{fig:per-d-mc}. It shows that the performance degradation percentages for the NAS benchmarks are higher over the two sites
-multi-cores scenario than over the two sites one core scenario, equal on average to 7\% and 4\% respectively.
-Moreover, using the two sites multi-cores scenario increased
-the computations to communications ratio, which may increase
-the overall execution time when the proposed scaling algorithm is applied and the frequencies scaled down.
-
-
-When the benchmarks are executed over the one
-site one core scenario, their performance degradation percentages are equal on average
-to 10\% and are higher than those executed over the one site multi-cores scenario,
-which on average is equal to 7\%.
-
-\textcolor{blue}{
-The performance degradation percentages over one site multi-cores is lower because the computations to communications ratio is decreased. Therefore, selecting bigger
-frequencies by the scaling algorithm are proportional to this ratio, and thus the execution time do not increase significantly.}
-
-
-The tradeoff distance percentages of the NAS
-benchmarks over all scenarios are presented in the figure \ref{fig:dist-mc}.
-These tradeoff distance percentages are used to verify which scenario is the best in terms of energy reduction and performance. The figure shows that using muti-cores in both of the one site and two sites scenarios gives bigger tradeoff distance percentages, on overage equal to 17.6\% and 15.3\% respectively, than using one core per node in both of one site and two sites scenarios, on average equal to 14.7\% and 13.3\% respectively.