+The need for more computing power is continually increasing. To partially satisfy this need, most supercomputers constructors just put more computing nodes in their platform. The resulting platform might achieve higher floating point operations per second (FLOPS), but the energy consumption and the heat dissipation are also increased. As an example, the chinese supercomputer Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 list \cite{TOP500_Supercomputers_Sites}. However, it was also the most power hungry platform with its over 3 millions cores consuming around 17.8 megawatts.
+Moreover, according to the U.S. annual energy outlook 2014
+\cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour
+was approximately equal to \$70.
+Therefore, the price of the energy consumed by the
+Tianhe-2 platform is approximately more than \$10 millions each year.
+The computing platforms must be more energy efficient and offer the highest number of FLOPS per watt possible, such as the TSUBAME-KFC at the GSIC center of Tokyo which
+became the top of the Green500 list in June 2014 \cite{Green500_List}.
+This heterogeneous platform executes more than four GFLOPS per watt.
+
+ Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms, such as scheduling, DVFS, ... DVFS is a widely used process to reduce the energy
+consumption of a processor by lowering its frequency. \textbf{put a reference to DVFS} However, it also the reduces the number of FLOPS executed by the processor which might increase the execution time of the application running over that processor.
+Therefore, researchers used different optimization strategies to select the frequency that gives the best tradeoff between the energy reduction and
+performance degradation ratio.
+\textbf{you should talk about the first paper here and say that the algorithm was applied to a homogeneous platform then define what is a heterogeneous platform, you can take it from the firdt paragraph in section 3 }
+
+In this paper, a frequency selecting algorithm is proposed. It selects the vector of frequencies for a heterogeneous platform that runs a message passing iterative application, that gives the maximum energy reduction and minimum
+performance degradation ratio simultaneously. The algorithm has a very small
+overhead, works online and does not need any training or profiling.
+
+This paper is organized as follows: Section~\ref{sec.relwork} presents some
+related works from other authors. Section~\ref{sec.exe} describes how the
+execution time of message passing programs can be predicted. It also presents an energy
+model that predicts the energy consumption of an application running over a heterogeneous platform. Section~\ref{sec.compet} presents
+the energy-performance objective function that maximizes the reduction of energy
+consumption while minimizing the degradation of the program's performance.
+Section~\ref{sec.optim} details the proposed frequency selecting algorithm then the precision of the proposed algorithm is verified.\textbf{the verification should be put here}
+Section~\ref{sec.expe} presents the results of applying the algorithm on the NAS parallel benchmarks and executing them
+on a heterogeneous platform. It also shows the results of running three
+different power scenarios and comparing them.
+Finally, we conclude in Section~\ref{sec.concl} with a summary and some future works.
+
+\textbf{never use we in an article and the algorithm is not heterogeneous! you cannot use scaling factors before defining what they are.}