-This prediction model is developed from the model to predict the execution time
-of message passing distributed applications for homogeneous and heterogeneous clusters
-~\cite{Our_first_paper,pdsec2015}. \textcolor{blue}{where the homogeneous cluster predication model was used one scaling factor denoted as $S$, because all the nodes in the cluster have the same computing powers. Whereas, in heterogeneous cluster prediction model all the nodes have different scales and the scaling factors have denoted as one dimensional vector $(S_1, S_2, \dots, S_N)$. The execution time prediction model for a grid Equation \ref{eq:perf} defines a two dimensional array of scales
-$(S_{11}, S_{12},\dots, S_{NM_i})$}. This model is used in the method to optimize both the energy consumption and the performance of iterative methods, which is presented in the following sections.
+This model is an adaptation of the one developed in ~\cite{Our_first_paper} which predicts the execution time
+of message passing applications with iterations running on homogeneous clusters.
+In a homogeneous cluster only one scaling factor denoted as $S$ was used because all the nodes in the cluster have the same computing power.
+In a heterogeneous cluster, each node may have a different scaling factor denoted as $(S_i)$ where $i$ is the index of the node. In a grid, each node in each cluster may have a scaling factor. The whole set of scaling factors of all the computing nodes in the grid is denoted by a two dimensional array of scales
+$(S_{11}, S_{12},\dots, S_{NM_i})$ where $N$ is the number of used clusters and $M_i$ is the number of nodes in cluster $i$.
+
+The execution time model, Equation \ref{eq:perf}, is used in the algorithm presented in section \ref{sec.optim}. The latter selects the scaling factors that optimize both the energy consumption and the performance of message passing applications with iterations running on grids.