X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/blobdiff_plain/054bc9f5e26028cd84aa816c5c06ed131959fdde..0a891245b5a70f9d2c9408a0b9eaeb03a5beede2:/Heter_paper.tex?ds=sidebyside diff --git a/Heter_paper.tex b/Heter_paper.tex index 9d743db..b8c513f 100644 --- a/Heter_paper.tex +++ b/Heter_paper.tex @@ -63,8 +63,7 @@ Arnaud Giersch } \IEEEauthorblockA{% - FEMTO-ST Institute\\ - University of Franche-Comté\\ + FEMTO-ST Institute, University of Franche-Comte\\ IUT de Belfort-Montbéliard, 19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France\\ % Telephone: \mbox{+33 3 84 58 77 86}, % Raphaël @@ -83,8 +82,7 @@ platforms many techniques have been used. Dynamic voltage and frequency scaling consumption. However, lowering the frequency of a CPU might increase the execution time of an application running on that processor. Therefore, the frequency that gives the best tradeoff between the energy consumption and the -performance of an application must be selected. - +performance of an application must be selected.\\ In this paper, a new online frequencies selecting algorithm for heterogeneous platforms is presented. It selects the frequency which tries to give the best tradeoff between energy saving and performance degradation, for each node @@ -240,7 +238,7 @@ nodes to finish their computations (see Figure~(\ref{fig:heter})). Therefore, the overall execution time of the program is the execution time of the slowest task which has the highest computation time and no slack time. - \begin{figure}[t] + \begin{figure}[!t] \centering \includegraphics[scale=0.6]{fig/commtasks} \caption{Parallel tasks on a heterogeneous platform} @@ -486,7 +484,7 @@ normalized execution time is inverted which gives the normalized performance equ \end{multline} -\begin{figure} +\begin{figure}[!t] \centering \subfloat[Homogeneous platform]{% \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}% @@ -590,7 +588,7 @@ words, until they reach the higher bound. It can also be noticed that the higher the difference between the faster nodes and the slower nodes is, the bigger the maximum distance between the energy curve and the performance curve is while the scaling factors are varying which results in bigger energy savings. -\begin{figure}[t] +\begin{figure}[!t] \centering \includegraphics[scale=0.5]{fig/start_freq} \caption{Selecting the initial frequencies} @@ -717,7 +715,7 @@ remaining 20\% to the static power), the same assumption was made in nodes were connected via an ethernet network with 1 Gbit/s bandwidth. -\begin{table}[htb] +\begin{table}[!t] \caption{Heterogeneous nodes characteristics} % title of Table \centering @@ -762,7 +760,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes. -\begin{table}[htb] +\begin{table}[!t] \caption{Running NAS benchmarks on 4 nodes } % title of Table \centering @@ -789,7 +787,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes. \label{table:res_4n} \end{table} -\begin{table}[htb] +\begin{table}[!t] \caption{Running NAS benchmarks on 8 and 9 nodes } % title of Table \centering @@ -816,7 +814,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes. \label{table:res_8n} \end{table} -\begin{table}[htb] +\begin{table}[!t] \caption{Running NAS benchmarks on 16 nodes } % title of Table \centering @@ -843,7 +841,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes. \label{table:res_16n} \end{table} -\begin{table}[htb] +\begin{table}[!t] \caption{Running NAS benchmarks on 32 and 36 nodes } % title of Table \centering @@ -870,7 +868,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes. \label{table:res_32n} \end{table} -\begin{table}[htb] +\begin{table}[!t] \caption{Running NAS benchmarks on 64 nodes } % title of Table \centering @@ -898,7 +896,7 @@ be executed on $1, 4, 9, 16, 36, 64, 144$ nodes. \end{table} -\begin{table}[htb] +\begin{table}[!t] \caption{Running NAS benchmarks on 128 and 144 nodes } % title of Table \centering @@ -959,7 +957,7 @@ small when compared to the communication times. -\begin{figure} +\begin{figure}[!t] \centering \subfloat[Energy saving]{% \includegraphics[width=.33\textwidth]{fig/energy}\label{fig:energy}}% @@ -1040,7 +1038,7 @@ scaling values which result in less energy saving but also less performance degradation. - \begin{table}[htb] + \begin{table}[!t] \caption{The results of the 70\%-30\% power scenario} % title of Table \centering @@ -1069,7 +1067,7 @@ degradation. -\begin{table}[htb] +\begin{table}[!t] \caption{The results of the 90\%-10\% power scenario} % title of Table \centering @@ -1097,7 +1095,7 @@ degradation. \end{table} -\begin{figure} +\begin{figure}[!t] \centering \subfloat[Comparison between the results on 8 nodes]{% \includegraphics[width=.33\textwidth]{fig/sen_comp}\label{fig:sen_comp}}% @@ -1131,7 +1129,7 @@ degradation values while giving the same weight for both metrics. -\begin{table}[h] +\begin{table}[!t] \caption{Comparing the proposed algorithm} \centering \begin{tabular}{|l|l|l|l|l|l|l|l|} @@ -1154,7 +1152,7 @@ degradation values while giving the same weight for both metrics. -\begin{figure}[t] +\begin{figure}[!t] \centering \includegraphics[scale=0.5]{fig/compare_EDP.pdf} \caption{Tradeoff comparison for NAS benchmarks class C}