X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/blobdiff_plain/47017a08cb1074a60d85aae0f647d757c576c8b7..1348e1c04d1acd9f1abb28fd928bc60359ba9d0f:/mpi-energy2-extension/Heter_paper.tex diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index 3fa9968..45aa0ee 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -107,9 +107,9 @@ -\title{Energy Consumption Reduction with DVFS for Message \\ +\title{Optimizing Energy Consumption with DVFS for Message \\ Passing Iterative Applications on \\ - Grid Architecture} + Grid Architectures} @@ -772,9 +772,7 @@ Therefore, the algorithm iterates on all remaining frequencies, from the higher bound until all nodes reach their minimum frequencies or their lower bounds, to compute the overall energy consumption and performance and selects the optimal vector of the frequency scaling factors. At each iteration the algorithm determines the slowest node -according to Equation~\ref{eq:perf} -%\AG[]{Be consistent: remove word ``Equation'' and add parentheses around equation number, here and all along the rest of the text.} -and keeps its frequency unchanged, +according to Equation~\ref{eq:perf} and keeps its frequency unchanged, while it lowers the frequency of all other nodes by one gear. The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the @@ -846,8 +844,6 @@ selected clusters and are presented in Table~\ref{table:grid5000}. \begin{figure}[!t] \centering \includegraphics[scale=0.6]{fig/power_consumption.pdf} - \AG{I don't understand the labels on the horizontal axis: 10:30:37, 10:30:38, - etc.} \caption{The power consumption by one core from the Taurus cluster} \label{fig:power_cons} \end{figure} @@ -866,7 +862,7 @@ The benchmarks have seven different classes, S, W, A, B, C, D and E, that repres \begin{tabular}{|*{7}{c|}} \hline & & Max & Min & Diff. & & \\ - Cluster & CPU & Freq. & Freq. & Freq. & No. of cores & Dynamic power \\ + Cluster & CPU & Freq. & Freq. & Freq. & Cores & Dynamic power \\ Name & model & GHz & GHz & GHz & per CPU & of one core \\ \hline & Intel & & & & & \\ @@ -922,7 +918,7 @@ Table~\ref{tab:sc} shows the number of nodes used from each cluster for each sce \begin{tabular}{|*{4}{c|}} \hline \multirow{2}{*}{Scenario name} & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} - & Cluster & Site & No. of nodes \\ + & Cluster & Site & Nodes per cluster \\ \hline \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon & 5 \\ \cline{2-4} & Graphene & Nancy & 5 \\ \cline{2-4} @@ -965,7 +961,7 @@ The long distance communications between the two distributed sites increase the The execution times of these benchmarks over one site with 16 and 32 nodes are also lower when compared to those of the two sites -scenario. Moreover, most of the benchmarks running over the one site scenario their execution times are approximately divided by two when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).\AG{Parse error (cannot understand the previous sentence).} +scenario. Moreover, most of the benchmarks running over the one site scenario have their execution times approximately divided by two when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes). However, the execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly @@ -1073,8 +1069,8 @@ in Figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively. \caption{The multicores scenarios} \begin{tabular}{|*{4}{c|}} \hline -Scenario name & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of nodes\\ in each cluster\end{tabular} & - \begin{tabular}[c]{@{}c@{}}No. of cores\\ for each node\end{tabular} \\ \hline +Scenario name & Cluster name & Nodes per cluster & + Cores per node \\ \hline \multirow{3}{*}{One core per node} & Graphite & 4 & 1 \\ \cline{2-4} & Graphene & 14 & 1 \\ \cline{2-4} & Griffon & 14 & 1 \\ \hline