X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/blobdiff_plain/47017a08cb1074a60d85aae0f647d757c576c8b7..bddd7466e25adccae000e02d733508c45f397bd0:/mpi-energy2-extension/Heter_paper.tex diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index 3fa9968..31d1182 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -107,9 +107,9 @@ -\title{Energy Consumption Reduction with DVFS for Message \\ +\title{Optimizing Energy Consumption with DVFS for Message \\ Passing Iterative Applications on \\ - Grid Architecture} + Grid Architectures} @@ -846,8 +846,6 @@ selected clusters and are presented in Table~\ref{table:grid5000}. \begin{figure}[!t] \centering \includegraphics[scale=0.6]{fig/power_consumption.pdf} - \AG{I don't understand the labels on the horizontal axis: 10:30:37, 10:30:38, - etc.} \caption{The power consumption by one core from the Taurus cluster} \label{fig:power_cons} \end{figure} @@ -866,7 +864,7 @@ The benchmarks have seven different classes, S, W, A, B, C, D and E, that repres \begin{tabular}{|*{7}{c|}} \hline & & Max & Min & Diff. & & \\ - Cluster & CPU & Freq. & Freq. & Freq. & No. of cores & Dynamic power \\ + Cluster & CPU & Freq. & Freq. & Freq. & Cores & Dynamic power \\ Name & model & GHz & GHz & GHz & per CPU & of one core \\ \hline & Intel & & & & & \\ @@ -922,7 +920,7 @@ Table~\ref{tab:sc} shows the number of nodes used from each cluster for each sce \begin{tabular}{|*{4}{c|}} \hline \multirow{2}{*}{Scenario name} & \multicolumn{3}{c|} {The participating clusters} \\ \cline{2-4} - & Cluster & Site & No. of nodes \\ + & Cluster & Site & Nodes per cluster \\ \hline \multirow{3}{*}{Two sites / 16 nodes} & Taurus & Lyon & 5 \\ \cline{2-4} & Graphene & Nancy & 5 \\ \cline{2-4} @@ -965,7 +963,7 @@ The long distance communications between the two distributed sites increase the The execution times of these benchmarks over one site with 16 and 32 nodes are also lower when compared to those of the two sites -scenario. Moreover, most of the benchmarks running over the one site scenario their execution times are approximately divided by two when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes).\AG{Parse error (cannot understand the previous sentence).} +scenario. Moreover, most of the benchmarks running over the one site scenario have their execution times approximately divided by two when the number of computing nodes is doubled from 16 to 32 nodes (linear speed up according to the number of the nodes). However, the execution times and the energy consumptions of EP and MG benchmarks, which have no or small communications, are not significantly @@ -1073,8 +1071,8 @@ in Figures \ref{fig:eng-cons-mc} and \ref{fig:time-mc} respectively. \caption{The multicores scenarios} \begin{tabular}{|*{4}{c|}} \hline -Scenario name & Cluster name & \begin{tabular}[c]{@{}c@{}}No. of nodes\\ in each cluster\end{tabular} & - \begin{tabular}[c]{@{}c@{}}No. of cores\\ for each node\end{tabular} \\ \hline +Scenario name & Cluster name & Nodes per cluster & + Cores per node \\ \hline \multirow{3}{*}{One core per node} & Graphite & 4 & 1 \\ \cline{2-4} & Graphene & 14 & 1 \\ \cline{2-4} & Griffon & 14 & 1 \\ \hline