X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/blobdiff_plain/5ef38a410118e911f3dd1a8c5e3cafe44227e013..b4f045bac56831537abd93cb4ee5bc570e53fe3b:/mpi-energy2-extension/Heter_paper.tex diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index d6ff46f..b2c2c21 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -842,6 +842,9 @@ which on average is up 26\%. Therefore, the tradeoff distance is related linear percentage. Finally, the best energy and performance tradeoff depends on the all of the following: 1) the computations to communications ratio when there is a communications and slack times, 2) the differences in computing powers between the computing nodes and 3) the differences in static and the dynamic powers of the nodes.} + + + \subsection{The experimental results of multicores clusters} \label{sec.res-mc} The grid'5000 clusters have different number of cores embedded in their nodes @@ -994,17 +997,107 @@ Scenario name & Cluster name & \begin{tabular}[c]{@{}c@ \label{fig:dist-mc} \end{figure} -\subsection{The results for different power consumption scenarios} -\label{sec.compare} +\subsection{The results of using different static power consumption scenarios} +\label{sec.pow_sen} +The static power consumption for one core of the computing node is the leakage power +consumption when this core is in the idle state. The node's idle state power value that measured +as in section \ref{sec.grid5000} had many power consumptions embedded such as +all cores static powers in addition to the power consumption of the other devices. So, the static power for one core +can't measured precisely. On the other hand, while the static power consumption of +one core representing the core's power when there is no any computation, thus +the majority of ratio of the total power consumption is depends on the dynamic power consumption. +Despite that, the static power consumption is becomes more important when the execution time +increased using DVFS. Therefore, the objective of this section is to verify the ability of the proposed +frequencies selecting algorithm when the static power consumption is changed. + +All the results obtained in the previous sections depend on the measured dynamic power +consumptions as in table \ref{table:grid5000}. Moreover, the static power consumption is assumed for +one core represents 20\% of the measured dynamic power of that core. +This assumption is extended in this section to taking into account others ratios for the static power consumption. +In addition to the previous ratio of the static power consumption, two other scenarios are used which +all of these scenarios can be denoted as follow: +\begin{itemize} +\item 10\% of static power scenario +\item 20\% of static power scenario +\item 30\% of static power scenario +\end{itemize} + +These three scenarios represented the ratio of the static power consumption that can be computed from +the dynamic power consumption of the core. The NAS benchmarks of class D are executed over 16 nodes +in the Nancy site using three clusters: Graphite, Graphene and Griffon. As same as used before, the one site 16 nodes +platform scenario explained in the last experiments, as in table \ref{tab:sc}, is uses to run +the NAS benchmarks with these static power scenarios. + + \begin{figure} + \centering + \includegraphics[scale=0.5]{fig/eng_pow.eps} + \caption{The energy saving percentages for NAS benchmarks of the three power scenario} + \label{fig:eng-pow} +\end{figure} + +\begin{figure} + \centering + \includegraphics[scale=0.5]{fig/per_pow.eps} + \caption{The performance degradation percentages for NAS benchmarks of the three power scenario} + \label{fig:per-pow} +\end{figure} +\begin{figure} + \centering + \includegraphics[scale=0.5]{fig/dist_pow.eps} + \caption{The tradeoff distance for NAS benchmarks of the three power scenario} + \label{fig:dist-pow} +\end{figure} +\begin{figure} + \centering + \includegraphics[scale=0.47]{fig/three_scenarios.pdf} + \caption{Comparing the selected frequencies of MG benchmarks for three static power scenarios} + \label{fig:fre-pow} +\end{figure} -\subsection{The comparison of the proposed scaling algorithm } +The energy saving percentages of NAS benchmarks with these three static power scenarios are presented +in figure \ref{fig:eng_sen}. This figure showed the 10\% of static power scenario +gives the biggest energy saving percentage comparing to 20\% and 30\% static power +scenario. When using smaller ratio of static power consumption, the proposed +frequencies selecting algorithm selects smaller frequencies, bigger scaling factors, +because the static energy consumption not increased significantly the overall energy +consumption. Therefore, more energy reduction can be achieved when the frequencies are scaled down. +For example figure \ref{fig:fre-pow}, illustrated that the proposed algorithm +proportionally scaled down the new computed frequencies with the overall predicted energy +consumption. The results of 30\% static power scenario gives the smallest energy saving percentages +because the new selected frequencies produced smaller ratio in the reduced energy consumption. +Furthermore, The proposed algorithm tries to limit selecting smaller frequencies that increased +the static energy consumption if the static power consumption is increased. +The performance degradation percentages are presented in the figure \ref{fig:per-pow}, +the 30\% of static power scenario had less performance degradation percentage, because +bigger frequencies was selected due to the big ratio in the static power consumption. +The inverse was happens in the 20\% and 30\% scenario, the algorithm was selected +biggest frequencies, smaller scaling factors, according to this increased in the static power ratios. +The tradoff distance for the NAS benchmarks with these three static powers scenarios +are presented in the figure \ref{fig:dist}. The results showed that the tradeoff +distance is the best when the 10\% of static power scenario is used, and this percentage +is decreased for the other two scenarios propositionally to their static power ratios. +In EP benchmarks, the results of energy saving, performance degradation and tradeoff +distance are showed small differences when the these static power scenarios were used, +because this benchmark not has communications. The proposed algorithm is selected +same frequencies in this benchmark when all these static power scenarios are used. +The small differences in the results are due to the static power is consumed during the computation +times side by side to the dynamic power consumption, knowing that the dynamic power consumption +representing the highest ratio in the total power consumption of the core, then any change in +the static power during these times have less affect on the overall energy consumption. While the +inverse was happens for the rest of the benchmarks which have the communications +that increased the static energy consumption linearly to the mount of communications +in these benchmarks. + + + +\subsection{The comparison of the proposed frequencies selecting algorithm } \label{sec.compare_EDP} - + \section{Conclusion} \label{sec.concl}