X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/blobdiff_plain/8a513654da9e95b25286414c6ac1261115fb9e9f..bf4693302ab924b37253fdb2079ad75a8808a987:/mpi-energy2-extension/Heter_paper.tex diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index 23a0c01..88731ec 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -733,7 +733,7 @@ frequency scaling factors are computed as a ratio between the computation time of the slowest node and the computation time of the node $i$ as follows: \begin{equation} \label{eq:Scp} - \Scp[ij] = \frac{ \mathop{\max_{i=1,\dots N}}_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]} + \Scp[ij] = \frac{ \mathop{\max\limits_{i=1,\dots N}}\limits_{j=1,\dots,M}(\Tcp[ij])} {\Tcp[ij]} \end{equation} Using the initial frequency scaling factors computed in (\ref{eq:Scp}), the algorithm computes the initial frequencies for all nodes as a ratio between the @@ -855,25 +855,25 @@ The benchmarks have seven different classes, S, W, A, B, C, D and E, that repres \centering \begin{tabular}{|*{7}{c|}} \hline - Cluster & CPU & Max & Min & Diff. & no. of cores & dynamic power \\ - Name & model & Freq. & Freq. & Freq. & per CPU & of one core \\ - & & GHz & GHz & GHz & & \\ + & & Max & Min & Diff. & & \\ + Cluster & CPU & Freq. & Freq. & Freq. & No. of cores & Dynamic power \\ + Name & model & GHz & GHz & GHz & per CPU & of one core \\ \hline - & Intel & 2.3 & 1.2 & 0.1 & 6 & \np[W]{35} \\ - Taurus & Xeon & & & & & \\ - & E5-2630 & & & & & \\ + & Intel & & & & & \\ + Taurus & Xeon & 2.3 & 1.2 & 0.1 & 6 & \np[W]{35} \\ + & E5-2630 & & & & & \\ \hline - & Intel & 2.53 & 1.2 & 0.133 & 4 & \np[W]{23} \\ - Graphene & Xeon & & & & & \\ - & X3440 & & & & & \\ + & Intel & & & & & \\ + Graphene & Xeon & 2.53 & 1.2 & 0.133 & 4 & \np[W]{23} \\ + & X3440 & & & & & \\ \hline - & Intel & 2.5 & 2 & 0.5 & 4 & \np[W]{46} \\ - Griffon & Xeon & & & & & \\ - & L5420 & & & & & \\ + & Intel & & & & & \\ + Griffon & Xeon & 2.5 & 2 & 0.5 & 4 & \np[W]{46} \\ + & L5420 & & & & & \\ \hline - & Intel & 2 & 1.2 & 0.1 & 8 & \np[W]{35} \\ - Graphite & Xeon & & & & & \\ - & E5-2650 & & & & & \\ + & Intel & & & & & \\ + Graphite & Xeon & 2 & 1.2 & 0.1 & 8 & \np[W]{35} \\ + & E5-2650 & & & & & \\ \hline \end{tabular} \label{table:grid5000} @@ -942,9 +942,7 @@ The NAS parallel benchmarks are executed over these two platforms The overall energy consumption of all the benchmarks solving the class D instance and using the proposed frequency selection algorithm is measured using the equation of the reduced energy consumption, equation -(\ref{eq:energy}). This model uses the measured dynamic power showed in Table \ref{table:grid5000} - -and the static +(\ref{eq:energy}). This model uses the measured dynamic power showed in Table \ref{table:grid5000} and the static power is assumed to be equal to 20\% of the dynamic power. The execution time is measured for all the benchmarks over these different scenarios. @@ -1003,7 +1001,7 @@ algorithm select smaller frequencies for the powerful nodes which produces less energy consumption and thus more energy saving. The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%. -\begin{figure} +\begin{figure*}[t] \centering \subfloat[The energy reduction while executing the NAS benchmarks over different scenarios ]{% \includegraphics[width=.48\textwidth]{fig/eng_s.eps}\label{fig:eng_s}} \hspace{0.4cm}% @@ -1014,7 +1012,7 @@ The best energy saving percentage was obtained in the one site scenario with 16 \includegraphics[width=.48\textwidth]{fig/dist.eps}\label{fig:dist}} \label{fig:exp-res} \caption{The experimental results of different scenarios} -\end{figure} +\end{figure*} Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios. The performance degradation percentage for the benchmarks running on two sites with 16 or 32 nodes is on average equal to 8.3\% or 4.7\% respectively. @@ -1097,7 +1095,18 @@ the one site one core scenario when compared to the ratio of the multi-cores sc More energy reduction can be gained when this ratio is big because it pushes the proposed scaling algorithm to select smaller frequencies that decrease the dynamic power consumption. These experiments also showed that the energy consumption and the execution times of the EP and MG benchmarks do not change significantly over these two scenarios because there are no or small communications. Contrary to EP and MG, the energy consumptions and the execution times of the rest of the benchmarks vary according to the communication times that are different from one scenario to the other. - +\begin{figure*}[t] + \centering + \subfloat[The energy saving of running NAS benchmarks over one core and multicores scenarios]{% + \includegraphics[width=.48\textwidth]{fig/eng_s_mc.eps}\label{fig:eng-s-mc}} \hspace{0.4cm}% + \subfloat[The performance degradation of running NAS benchmarks over one core and multicores scenarios + ]{% + \includegraphics[width=.48\textwidth]{fig/per_d_mc.eps}\label{fig:per-d-mc}}\hspace{0.4cm}% + \subfloat[The tradeoff distance of running NAS benchmarks over one core and multicores scenarios]{% + \includegraphics[width=.48\textwidth]{fig/dist_mc.eps}\label{fig:dist-mc}} + \label{fig:exp-res} + \caption{The experimental results of one core and multi-cores scenarios} +\end{figure*} The energy saving percentages of all NAS benchmarks running over these two scenarios are presented in figure \ref{fig:eng-s-mc}. The figure shows that the energy saving percentages in the one @@ -1114,18 +1123,7 @@ in figure \ref{fig:dist-mc}. These tradeoff distance between energy consumption -\begin{figure} - \centering - \subfloat[The energy saving of running NAS benchmarks over one core and multicores scenarios]{% - \includegraphics[width=.48\textwidth]{fig/eng_s_mc.eps}\label{fig:eng-s-mc}} \hspace{0.4cm}% - \subfloat[The performance degradation of running NAS benchmarks over one core and multicores scenarios - ]{% - \includegraphics[width=.48\textwidth]{fig/per_d_mc.eps}\label{fig:per-d-mc}}\hspace{0.4cm}% - \subfloat[The tradeoff distance of running NAS benchmarks over one core and multicores scenarios]{% - \includegraphics[width=.48\textwidth]{fig/dist_mc.eps}\label{fig:dist-mc}} - \label{fig:exp-res} - \caption{The experimental results of one core and multi-cores scenarios} -\end{figure} + @@ -1140,7 +1138,7 @@ The experiments have been executed with these two new static power scenarios ov In these experiments, class D of the NAS parallel benchmarks are executed over the Nancy site. 16 computing nodes from the three clusters, Graphite, Graphene and Griffon, where used in this experiment. -\begin{figure} +\begin{figure*}[t] \centering \subfloat[The energy saving percentages for the nodes executing the NAS benchmarks over the three power scenarios]{% \includegraphics[width=.48\textwidth]{fig/eng_pow.eps}\label{fig:eng-pow}} \hspace{0.4cm}% @@ -1151,7 +1149,7 @@ In these experiments, class D of the NAS parallel benchmarks are executed over t \includegraphics[width=.48\textwidth]{fig/dist_pow.eps}\label{fig:dist-pow}} \label{fig:exp-pow} \caption{The experimental results of different static power scenarios} -\end{figure} +\end{figure*} @@ -1205,7 +1203,7 @@ The experimental results, the energy saving, performance degradation and tradeof presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively. -\begin{figure} +\begin{figure*}[t] \centering \subfloat[The energy reduction induced by the Maxdist method and the EDP method]{% \includegraphics[width=.48\textwidth]{fig/edp_eng}\label{fig:edp-eng}} \hspace{0.4cm}% @@ -1215,7 +1213,7 @@ presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp- \includegraphics[width=.48\textwidth]{fig/edp_dist}\label{fig:edp-dist}} \label{fig:edp-comparison} \caption{The comparison results} -\end{figure} +\end{figure*} As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios. The proposed algorithm gives better results than EDP because it @@ -1250,8 +1248,7 @@ that the proposed algorithm outperforms the latter by selecting a vector of freq In the near future, we would like to develop a similar method that is adapted to asynchronous iterative applications where iterations are not synchronized and communications are overlapped with computations. - The development of -such a method might require a new energy model because the +The development of such a method might require a new energy model because the number of iterations is not known in advance and depends on the global convergence of the iterative system.