X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/blobdiff_plain/e25948dd52ceacdc4dc6175e899ae810ea4cc134..31b2783760f2dd690f2bade6d15a67fbb2252c22:/Heter_paper.tex?ds=sidebyside diff --git a/Heter_paper.tex b/Heter_paper.tex index 90793bf..5b6e349 100644 --- a/Heter_paper.tex +++ b/Heter_paper.tex @@ -260,7 +260,7 @@ where $TcpOld_i$ is the computation time of processor $i$ during the first iteration and $MinTcm$ is the communication time of the slowest processor from the first iteration. The model computes the maximum computation time with scaling factor from each node added to the communication time of the \subsection{The verifications of the proposed method} -\label{sec.verif} +\label{sec.verif.method} The precision of the proposed algorithm mainly depends on the execution time prediction model defined in EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). The energy model is also significantly dependent on the execution time model because the static energy is @@ -638,7 +638,7 @@ which results in bigger energy savings. \end{algorithm} \subsection{The verifications of the proposed algorithm} -\label{sec.verif} +\label{sec.verif.algo} The precision of the proposed algorithm mainly depends on the execution time prediction model defined in EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). The energy model is also significantly dependent on the execution time model because the static energy is