]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
introduction correction
authorjean-claude <jean-claude.charr@univ-fcomte.fr>
Tue, 20 Oct 2015 13:57:28 +0000 (15:57 +0200)
committerjean-claude <jean-claude.charr@univ-fcomte.fr>
Tue, 20 Oct 2015 13:57:28 +0000 (15:57 +0200)
mpi-energy2-extension/Heter_paper.tex

index cd8702488d3530b69f9d5eff04988468dcc4799d..c8f4cd0a73aea76b40aca0d7e4e8546eaf95d0b8 100644 (file)
 
 \section{Introduction}
 \label{sec.intro}
 
 \section{Introduction}
 \label{sec.intro}
-\textcolor{blue}{
+\textcolor{red}{did you verify that these informations are still accurate before changing the years to 2015?}
 The need for more computing power is continually increasing. To partially
 satisfy this need, most supercomputers constructors just put more computing
 nodes in their platform. The resulting platforms may achieve higher floating
 The need for more computing power is continually increasing. To partially
 satisfy this need, most supercomputers constructors just put more computing
 nodes in their platform. The resulting platforms may achieve higher floating
@@ -133,9 +133,7 @@ of FLOPS per watt possible, such as the Shoubu-ExaScaler from RIKEN
 which became the top of the Green500 list in June 2015 \cite{Green500_List}.
 This heterogeneous platform executes more than 7 GFLOPS per watt while consuming
 50.32 kilowatts.
 which became the top of the Green500 list in June 2015 \cite{Green500_List}.
 This heterogeneous platform executes more than 7 GFLOPS per watt while consuming
 50.32 kilowatts.
-}
 
 
-\textcolor{blue}{
 Besides platform improvements, there are many software and hardware techniques
 to lower the energy consumption of these platforms, such as scheduling, DVFS,
 \dots{} DVFS is a widely used process to reduce the energy consumption of a
 Besides platform improvements, there are many software and hardware techniques
 to lower the energy consumption of these platforms, such as scheduling, DVFS,
 \dots{} DVFS is a widely used process to reduce the energy consumption of a
@@ -148,32 +146,31 @@ trade-off between the energy reduction and performance degradation ratio. In
 \cite{Our_first_paper} and \cite{pdsec2015} , a frequencies selecting algorithm was proposed to reduce
 the energy consumption of message passing iterative applications running over
 homogeneous  and heterogeneous clusters respectively.  
 \cite{Our_first_paper} and \cite{pdsec2015} , a frequencies selecting algorithm was proposed to reduce
 the energy consumption of message passing iterative applications running over
 homogeneous  and heterogeneous clusters respectively.  
-The results of the experiments show significant energy
+The results of the experiments showed significant energy
 consumption reductions. All the experimental results were conducted over 
 consumption reductions. All the experimental results were conducted over 
-Simgrid simulator \cite{SimGrid}, which offers easy tools to create a homogeneous and heterogeneous platforms. In this paper, a new frequencies selecting algorithm
-adapted for heterogeneous grid platform is presented and executed over real testbed, 
-the grid'5000 platform \cite{grid5000}. It selects the vector of
-frequencies, for a heterogeneous grid platform running a message passing iterative
-application, that simultaneously tries to offer the maximum energy reduction and
-minimum performance degradation ratio. The algorithm has a very small overhead,
-works online and does not need any training or profiling.}
+Simgrid simulator \cite{SimGrid}, which offers easy tools to create a homogeneous and heterogeneous platforms and run message passing parallel applications over them. In this paper, a new frequencies selecting algorithm,
+adapted to  grid platforms, is presented. It is applied to the NAS parallel benchmarks and evaluated over a real testbed, 
+the grid'5000 platform \cite{grid5000}. It selects  for a grid platform running a message passing iterative
+application the vector of
+frequencies  that simultaneously tries to offer the maximum energy reduction and
+minimum performance degradation ratios. The algorithm has a very small overhead,
+works online and does not need any training or profiling.
+
 
 
-\textcolor{blue}{
 This paper is organized as follows: Section~\ref{sec.relwork} presents some
 related works from other authors.  Section~\ref{sec.exe} describes how the
 execution time of message passing programs can be predicted.  It also presents
 an energy model that predicts the energy consumption of an application running
 This paper is organized as follows: Section~\ref{sec.relwork} presents some
 related works from other authors.  Section~\ref{sec.exe} describes how the
 execution time of message passing programs can be predicted.  It also presents
 an energy model that predicts the energy consumption of an application running
-over a heterogeneous grid. Section~\ref{sec.compet} presents the
+over a grid platform. Section~\ref{sec.compet} presents the
 energy-performance objective function that maximizes the reduction of energy
 consumption while minimizing the degradation of the program's performance.
 Section~\ref{sec.optim} details the proposed frequencies selecting algorithm.
 Section~\ref{sec.expe} presents the results of applying the algorithm on the 
 energy-performance objective function that maximizes the reduction of energy
 consumption while minimizing the degradation of the program's performance.
 Section~\ref{sec.optim} details the proposed frequencies selecting algorithm.
 Section~\ref{sec.expe} presents the results of applying the algorithm on the 
-NAS parallel benchmarks and executing them on a grid'5000 testbed. 
+NAS parallel benchmarks and executing them on the grid'5000 testbed. 
 It shows the results of running different scenarios using multi-cores and one core per node 
 It shows the results of running different scenarios using multi-cores and one core per node 
-and comparing them. It also shows the results of running
-three different power scenarios and comparing them. Moreover, it shows the
+and comparing them. It also evaluates the algorithm over three different power scenarios. Moreover, it shows the
 comparison results between the proposed method and an existing method.  Finally,
 comparison results between the proposed method and an existing method.  Finally,
-in Section~\ref{sec.concl} the paper ends with a summary and some future works.}
+in Section~\ref{sec.concl} the paper ends with a summary and some future works.
 
 \section{Related works}
 \label{sec.relwork}
 
 \section{Related works}
 \label{sec.relwork}