]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some corrections
authorafanfakh <afanfakh@fanfakh.afanfakh>
Mon, 1 Dec 2014 13:52:48 +0000 (14:52 +0100)
committerafanfakh <afanfakh@fanfakh.afanfakh>
Mon, 1 Dec 2014 13:52:48 +0000 (14:52 +0100)
Heter_paper.tex
fig/sen_comp.pdf

index 78ca9987e439e38604e4c67620b62190d75dbead..d2180d904ec37af141ef961e3e2e8289a23dc89d 100644 (file)
@@ -84,10 +84,10 @@ Therefore, the frequency that gives the best  tradeoff between the energy consum
 application must be selected. 
 
 In this paper, a new online frequencies selecting algorithm for heterogeneous platforms is presented. 
 application must be selected. 
 
 In this paper, a new online frequencies selecting algorithm for heterogeneous platforms is presented. 
-It selects the frequency that give the best tradeoff between energy saving and performance degradation, 
+It selects the frequency that give the best tradeoff between energy saving and performance degradation, 
 for each node computing the message passing iterative application. The algorithm has a small overhead and 
 works without training or profiling. It uses a new energy model for message passing iterative applications 
 for each node computing the message passing iterative application. The algorithm has a small overhead and 
 works without training or profiling. It uses a new energy model for message passing iterative applications 
-running on a heterogeneous platform. The proposed algorithm was evaluated  on the Simgrid simulator while 
+running on a heterogeneous platform. The proposed algorithm evaluated  on the Simgrid simulator while 
 running the NAS parallel benchmarks. The experiments demonstrated that it reduces the energy consumption 
 up to 35\% while limiting the performance degradation as much as possible.
 \end{abstract}
 running the NAS parallel benchmarks. The experiments demonstrated that it reduces the energy consumption 
 up to 35\% while limiting the performance degradation as much as possible.
 \end{abstract}
@@ -97,7 +97,7 @@ up to 35\% while limiting the performance degradation as much as possible.
 The need for more computing power is continually increasing. To partially satisfy this need, most supercomputers 
 constructors just put more computing nodes in their platform. The resulting platform might achieve higher floating 
 point operations per second (FLOPS), but the energy consumption and the heat dissipation are also increased. 
 The need for more computing power is continually increasing. To partially satisfy this need, most supercomputers 
 constructors just put more computing nodes in their platform. The resulting platform might achieve higher floating 
 point operations per second (FLOPS), but the energy consumption and the heat dissipation are also increased. 
-As an example, the chinese supercomputer Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 
+As an example, the Chinese supercomputer Tianhe-2 had the highest FLOPS in November 2014 according to the Top500 
 list \cite{TOP500_Supercomputers_Sites}.  However, it was also the  most power hungry platform with its over 3 millions 
 cores consuming around 17.8 megawatts. Moreover, according to the U.S. annual energy outlook 2014 
 \cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour 
 list \cite{TOP500_Supercomputers_Sites}.  However, it was also the  most power hungry platform with its over 3 millions 
 cores consuming around 17.8 megawatts. Moreover, according to the U.S. annual energy outlook 2014 
 \cite{U.S_Annual.Energy.Outlook.2014}, the price of energy for 1 megawatt-hour 
@@ -105,9 +105,9 @@ was approximately equal to \$70.
 Therefore, the price of the energy consumed by the 
 Tianhe-2 platform is approximately more than \$10 millions each year. 
 The computing platforms must be more energy efficient and offer the highest number of FLOPS per watt possible, 
 Therefore, the price of the energy consumed by the 
 Tianhe-2 platform is approximately more than \$10 millions each year. 
 The computing platforms must be more energy efficient and offer the highest number of FLOPS per watt possible, 
-such as the TSUBAME-KFC at the GSIC center of Tokyo which  
-became the top of the Green500 list in June 2014 \cite{Green500_List}. 
-This heterogeneous platform executes more than four  GFLOPS per watt.
+such as the L-CSC from the GSI Helmholtz Center which  
+became the top of the Green500 list in November 2014 \cite{Green500_List}. 
+This heterogeneous platform executes more than 5  GFLOPS per watt while consuming 57.15 kilowatts.
 
 Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms, 
 such as scheduling, DVFS, ... DVFS is a widely  used process to reduce the energy consumption of a processor by lowering 
 
 Besides hardware improvements, there are many software techniques to lower the energy consumption of these platforms, 
 such as scheduling, DVFS, ... DVFS is a widely  used process to reduce the energy consumption of a processor by lowering 
@@ -116,8 +116,7 @@ executed by the processor which might increase  the execution time of the applic
 Therefore, researchers used different optimization strategies to select the frequency that gives the best tradeoff  
 between the energy reduction and 
 performance degradation ratio. In \cite{Our_first_paper},  a frequency selecting algorithm 
 Therefore, researchers used different optimization strategies to select the frequency that gives the best tradeoff  
 between the energy reduction and 
 performance degradation ratio. In \cite{Our_first_paper},  a frequency selecting algorithm 
-was proposed to reduce the energy consumption of message passing iterative applications running over homogeneous platforms. The  results of the experiments showed significant energy consumption reductions. In this paper,  a new frequency selecting algorithm  adapted for heterogeneous platform  is presented. It selects the vector of frequencies, for a heterogeneous platform running a message passing iterative application,  that simultaneously gives the maximum energy reduction and minimum 
-performance degradation ratio. The algorithm has a very small 
+was proposed to reduce the energy consumption of message passing iterative applications running over homogeneous platforms. The  results of the experiments showed significant energy consumption reductions. In this paper,  a new frequency selecting algorithm  adapted for heterogeneous platform  is presented. It selects the vector of frequencies, for a heterogeneous platform running a message passing iterative application,  that simultaneously tries to give the maximum energy reduction and minimum performance degradation ratio. The algorithm has a very small 
 overhead, works online and does not need any training or profiling.  
 
 This paper is organized as follows: Section~\ref{sec.relwork} presents some
 overhead, works online and does not need any training or profiling.  
 
 This paper is organized as follows: Section~\ref{sec.relwork} presents some
@@ -140,7 +139,7 @@ the CPU while computing, in order to reduce the energy consumption of the proces
 also  allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation.  Many researchers used different strategies to tackle this problem. Some of them developed online methods that compute the new frequency while executing the application, such as ~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}. Others used offline methods that might need to run the application and profile it before selecting the new frequency, such as ~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}. The methods could be heuristics, exact  or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform,  synchronous or asynchronous application, ... 
 
 In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
 also  allowed in the GPUs to achieve the same goal. Reducing the frequency of a processor lowers its number of FLOPS and might degrade the performance of the application running on that processor, especially if it is compute bound. Therefore selecting the appropriate frequency for a processor to satisfy some objectives and while taking into account all the constraints, is not a trivial operation.  Many researchers used different strategies to tackle this problem. Some of them developed online methods that compute the new frequency while executing the application, such as ~\cite{Hao_Learning.based.DVFS,Dhiman_Online.Learning.Power.Management}. Others used offline methods that might need to run the application and profile it before selecting the new frequency, such as ~\cite{Rountree_Bounding.energy.consumption.in.MPI,Cochran_Pack_and_Cap_Adaptive_DVFS}. The methods could be heuristics, exact  or brute force methods that satisfy varied objectives such as energy reduction or performance. They also could be adapted to the execution's environment and the type of the application such as sequential, parallel or distributed architecture, homogeneous or heterogeneous platform,  synchronous or asynchronous application, ... 
 
 In this paper, we are interested in reducing energy for message passing iterative synchronous applications running over heterogeneous platforms.
-Some works have already been done for such platforms and it can be classified into two types of heterogeneous platforms: 
+Some works have already been done for such platforms and they can be classified into two types of heterogeneous platforms: 
 \begin{itemize}
 
 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
 \begin{itemize}
 
 \item the platform is composed of homogeneous GPUs and homogeneous CPUs.
@@ -161,9 +160,9 @@ efficiency than other clusters only composed of  CPUs.
  
 The work presented in this paper concerns the second type of platform, with heterogeneous CPUs.
 Many methods were conceived to reduce the energy consumption of this type of platform.  Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling}  
  
 The work presented in this paper concerns the second type of platform, with heterogeneous CPUs.
 Many methods were conceived to reduce the energy consumption of this type of platform.  Naveen et al.~\cite{Naveen_Power.Efficient.Resource.Scaling}  
-developed a method that minimizes the value of $energy*delay^2$ (the delay is the sum of slack times that happen during synchronous communications) by dynamically assigning new frequencies to the CPUs of the heterogeneous cluster.. Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} propose
+developed a method that minimizes the value of $energy*delay^2$ (the delay is the sum of slack times that happen during synchronous communications) by dynamically assigning new frequencies to the CPUs of the heterogeneous cluster. Lizhe et al.~\cite{Lizhe_Energy.aware.parallel.task.scheduling} proposed
 an algorithm that divides the executed tasks into two types: the critical and 
 an algorithm that divides the executed tasks into two types: the critical and 
-non critical tasks. The algorithm scales down the frequency of  non critical tasks proportionally to their  slack and communication times while limiting  the performance degradation percentage to less than 10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS} 
+non critical tasks. The algorithm scales down the frequency of  non critical tasks proportionally to their  slack and communication times while limiting  the performance degradation percentage to less than 10\%. In~\cite{Joshi_Blackbox.prediction.of.impact.of.DVFS}, they developed 
   a heterogeneous cluster composed of two  types 
 of Intel and AMD processors. They use a gradient method to predict the impact of DVFS operations on performance.
 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, 
   a heterogeneous cluster composed of two  types 
 of Intel and AMD processors. They use a gradient method to predict the impact of DVFS operations on performance.
 In~\cite{Shelepov_Scheduling.on.Heterogeneous.Multicore} and \cite{Li_Minimizing.Energy.Consumption.for.Frame.Based.Tasks}, 
@@ -177,8 +176,7 @@ In contrast to the above described papers, this paper presents the following con
        a heterogeneous platform. Both models takes into account the communication and slack times. The models can predict the required energy and the execution time of the application.
        
 \item a new online frequency selecting algorithm for heterogeneous platforms. The algorithm has a very small 
        a heterogeneous platform. Both models takes into account the communication and slack times. The models can predict the required energy and the execution time of the application.
        
 \item a new online frequency selecting algorithm for heterogeneous platforms. The algorithm has a very small 
-      overhead and does not need for any training or profiling. It uses a new optimization function which simultaneously maximizes the performance and minimizes the energy consumption of a message passing iterative synchronous application .
-
+      overhead and does not need for any training or profiling. It uses a new optimization function which simultaneously maximizes the performance and minimizes the energy consumption of a message passing iterative synchronous application.
       
 \end{enumerate}
 
       
 \end{enumerate}
 
@@ -221,7 +219,7 @@ and consequently its computing power, the execution time of a program running
 over that scaled down processor might increase, especially if the program is 
 compute bound.  The frequency reduction process can be  expressed by the scaling 
 factor S which is the ratio between  the maximum and the new frequency of a CPU 
 over that scaled down processor might increase, especially if the program is 
 compute bound.  The frequency reduction process can be  expressed by the scaling 
 factor S which is the ratio between  the maximum and the new frequency of a CPU 
-as in EQ (\ref{eq:s}).
+as in (\ref{eq:s}).
 \begin{equation}
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
 \begin{equation}
   \label{eq:s}
  S = \frac{F_\textit{max}}{F_\textit{new}}
@@ -235,7 +233,7 @@ as in EQ (\ref{eq:s}).
  communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}. 
  The communication time for a task is the summation of  periods of 
  time that begin with an MPI call for sending or receiving   a message 
  communications~\cite{Freeh_Exploring.the.Energy.Time.Tradeoff}. 
  The communication time for a task is the summation of  periods of 
  time that begin with an MPI call for sending or receiving   a message 
till the message is synchronously sent or received.
until the message is synchronously sent or received.
 
 Since in a heterogeneous platform, each node has different characteristics,
 especially different frequency gears, when applying DVFS operations on these
 
 Since in a heterogeneous platform, each node has different characteristics,
 especially different frequency gears, when applying DVFS operations on these
@@ -246,40 +244,24 @@ applications running over a heterogeneous platform, for different vectors of
 scaling factors, the communication time and the computation time for all the
 tasks must be measured during the first iteration before applying any DVFS
 operation. Then the execution time for one iteration of the application with any
 scaling factors, the communication time and the computation time for all the
 tasks must be measured during the first iteration before applying any DVFS
 operation. Then the execution time for one iteration of the application with any
-vector of scaling factors can be predicted using EQ (\ref{eq:perf}).
+vector of scaling factors can be predicted using (\ref{eq:perf}).
 \begin{equation}
   \label{eq:perf}
  \textit  T_\textit{new} = 
 \begin{equation}
   \label{eq:perf}
  \textit  T_\textit{new} = 
- \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) +  MinTcm
+ \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) +  MinTcm 
+\end{equation}
+Where:\\
+\begin{equation}
+\label{eq:perf}
+ MinTcm = \min_{i=1,2,\dots,N} (Tcm_i)
 \end{equation}
 where $TcpOld_i$ is the computation time  of processor $i$ during the first 
 iteration and $MinTcm$ is the communication time of the slowest processor from 
 the first iteration.  The model computes the maximum computation time 
 \end{equation}
 where $TcpOld_i$ is the computation time  of processor $i$ during the first 
 iteration and $MinTcm$ is the communication time of the slowest processor from 
 the first iteration.  The model computes the maximum computation time 
-with scaling factor from each node  added to the communication time of the \subsection{The verifications of the proposed method}
-\label{sec.verif.method}
-The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
-EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
-The energy model is also significantly dependent  on the execution time model because the static energy is 
-linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
-the work presented in this paper is based on the execution time model. To verify this model, the predicted 
-execution time was compared to  the real execution time over Simgrid for all  the NAS parallel benchmarks 
-running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
-the maximum normalized difference between the predicted execution time  and the real execution time is equal 
-to 0.03 for all the NAS benchmarks.
-
-Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) 
-in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm 
-that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
-different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
-and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
-for a heterogeneous cluster composed of four different types of nodes having the characteristics presented in 
-table~(\ref{table:platform}), it takes on average \np[ms]{0.04}  for 4 nodes and \np[ms]{0.15} on average for 144 nodes 
-to compute the best scaling factors vector.  The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the number 
-of iterations and $N$ is the number of computing nodes. The algorithm needs  from 12 to 20 iterations to select the best 
-vector of frequency scaling factors that gives the results of the sections (\ref{sec.res}) and (\ref{sec.compare}).
+with scaling factor from each node  added to the communication time of the 
 slowest node, it means  only the  communication time without any slack time. 
 Therefore, the execution time of the iterative application is 
 slowest node, it means  only the  communication time without any slack time. 
 Therefore, the execution time of the iterative application is 
-equal to the execution time of one iteration as in EQ(\ref{eq:perf}) multiplied 
+equal to the execution time of one iteration as in (\ref{eq:perf}) multiplied 
 by the number of iterations of that application.
 
 This prediction model is developed from the model for predicting the execution time of 
 by the number of iterations of that application.
 
 This prediction model is developed from the model for predicting the execution time of 
@@ -297,7 +279,7 @@ two power metrics: the static and the dynamic power.  While the first one is
 consumed as long as the computing unit is turned on, the latter is only consumed during
 computation times.  The dynamic power $Pd$ is related to the switching
 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
 consumed as long as the computing unit is turned on, the latter is only consumed during
 computation times.  The dynamic power $Pd$ is related to the switching
 activity $\alpha$, load capacitance $C_L$, the supply voltage $V$ and
-operational frequency $F$, as shown in EQ(\ref{eq:pd}).
+operational frequency $F$, as shown in (\ref{eq:pd}).
 \begin{equation}
   \label{eq:pd}
   Pd = \alpha \cdot C_L \cdot V^2 \cdot F
 \begin{equation}
   \label{eq:pd}
   Pd = \alpha \cdot C_L \cdot V^2 \cdot F
@@ -316,23 +298,23 @@ to execute a given program can be computed as:
    E_\textit{ind} =  Pd \cdot Tcp + Ps \cdot T
 \end{equation}
 where $T$ is the execution time of the program, $Tcp$ is the computation
    E_\textit{ind} =  Pd \cdot Tcp + Ps \cdot T
 \end{equation}
 where $T$ is the execution time of the program, $Tcp$ is the computation
-time and $Tcp \leq T$.  $Tcp$ may be equal to $T$ if there is no
+time and $Tcp \le T$.  $Tcp$ may be equal to $T$ if there is no
 communication and no slack time.
 
 The main objective of DVFS operation is to reduce the overall energy consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  
 The operational frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
 communication and no slack time.
 
 The main objective of DVFS operation is to reduce the overall energy consumption~\cite{Le_DVFS.Laws.of.Diminishing.Returns}.  
 The operational frequency $F$ depends linearly on the supply voltage $V$, i.e., $V = \beta \cdot F$ with some
-constant $\beta$.  This equation is used to study the change of the dynamic
+constant $\beta$.~This equation is used to study the change of the dynamic
 voltage with respect to various frequency values in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction
 process of the frequency can be expressed by the scaling factor $S$ which is the
 voltage with respect to various frequency values in~\cite{Rauber_Analytical.Modeling.for.Energy}.  The reduction
 process of the frequency can be expressed by the scaling factor $S$ which is the
-ratio between the maximum and the new frequency as in EQ(\ref{eq:s}).
+ratio between the maximum and the new frequency as in (\ref{eq:s}).
 The CPU governors are power schemes supplied by the operating
 system's kernel to lower a core's frequency. The new frequency 
 The CPU governors are power schemes supplied by the operating
 system's kernel to lower a core's frequency. The new frequency 
-$F_{new}$ from EQ(\ref{eq:s}) can be calculated as follows:
+$F_{new}$ from (\ref{eq:s}) can be calculated as follows:
 \begin{equation}
   \label{eq:fnew}
    F_\textit{new} = S^{-1} \cdot F_\textit{max}
 \end{equation}
 \begin{equation}
   \label{eq:fnew}
    F_\textit{new} = S^{-1} \cdot F_\textit{max}
 \end{equation}
-Replacing $F_{new}$ in EQ(\ref{eq:pd}) as in EQ(\ref{eq:fnew}) gives the following 
+Replacing $F_{new}$ in (\ref{eq:pd}) as in (\ref{eq:fnew}) gives the following 
 equation for dynamic power consumption:
 \begin{multline}
   \label{eq:pdnew}
 equation for dynamic power consumption:
 \begin{multline}
   \label{eq:pdnew}
@@ -342,7 +324,7 @@ equation for dynamic power consumption:
 where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the 
 new frequency and the maximum frequency respectively.
 
 where $ {P}_\textit{dNew}$  and $P_{dOld}$ are the  dynamic power consumed with the 
 new frequency and the maximum frequency respectively.
 
-According to EQ(\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
+According to (\ref{eq:pdnew}) the dynamic power is reduced by a factor of $S^{-3}$ when 
 reducing the frequency by a factor of $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is proportional 
 to the frequency of a CPU, the computation time is increased proportionally to $S$.  
 The new dynamic energy is the  dynamic power multiplied by the new time of computation 
 reducing the frequency by a factor of $S$~\cite{Rauber_Analytical.Modeling.for.Energy}. Since the FLOPS of a CPU is proportional 
 to the frequency of a CPU, the computation time is increased proportionally to $S$.  
 The new dynamic energy is the  dynamic power multiplied by the new time of computation 
@@ -356,7 +338,7 @@ and even when idle. As in~\cite{Rauber_Analytical.Modeling.for.Energy,Zhuo_Energ
  the static power of a processor is considered as constant 
 during idle and computation periods, and for all its available frequencies. 
 The static energy is the static power multiplied by the execution time of the program. 
  the static power of a processor is considered as constant 
 during idle and computation periods, and for all its available frequencies. 
 The static energy is the static power multiplied by the execution time of the program. 
-According to the execution time model in EQ(\ref{eq:perf}), the execution time of the program 
+According to the execution time model in (\ref{eq:perf}), the execution time of the program 
 is the summation of the computation and the communication times. The computation time is linearly related  
 to the frequency scaling factor, while this scaling factor does not affect the communication time. 
 The static energy of a processor after scaling its frequency is computed as follows: 
 is the summation of the computation and the communication times. The computation time is linearly related  
 to the frequency scaling factor, while this scaling factor does not affect the communication time. 
 The static energy of a processor after scaling its frequency is computed as follows: 
@@ -373,7 +355,7 @@ in order to decrease the overall energy consumption of the application and reduc
 The communication time of a processor $i$ is noted as $Tcm_{i}$ and could contain slack times 
 if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do 
 not have equal communication times. While the dynamic energy is computed according to the frequency 
 The communication time of a processor $i$ is noted as $Tcm_{i}$ and could contain slack times 
 if it is communicating with slower nodes, see figure(\ref{fig:heter}). Therefore, all nodes do 
 not have equal communication times. While the dynamic energy is computed according to the frequency 
-scaling factor and the dynamic power of each node as in EQ(\ref{eq:Edyn}), the static energy is 
+scaling factor and the dynamic power of each node as in (\ref{eq:Edyn}), the static energy is 
 computed as the sum of the execution time of each processor multiplied by its static power. 
 The overall energy consumption of a message passing  distributed application executed over a 
 heterogeneous platform during one iteration is the summation of all dynamic and static energies 
 computed as the sum of the execution time of each processor multiplied by its static power. 
 The overall energy consumption of a message passing  distributed application executed over a 
 heterogeneous platform during one iteration is the summation of all dynamic and static energies 
@@ -389,7 +371,7 @@ Reducing the frequencies of the processors according to the vector of
 scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
 application and thus, increase the static energy because the execution time is
 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption for the iterative 
 scaling factors $(S_1, S_2,\dots, S_N)$ may degrade the performance of the
 application and thus, increase the static energy because the execution time is
 increased~\cite{Kim_Leakage.Current.Moore.Law}. The overall energy consumption for the iterative 
-application can be measured by measuring  the energy consumption for one iteration as in EQ(\ref{eq:energy}) 
+application can be measured by measuring  the energy consumption for one iteration as in (\ref{eq:energy}) 
 multiplied by the number of iterations of that application.
 
 
 multiplied by the number of iterations of that application.
 
 
@@ -439,17 +421,16 @@ while scaling down the frequency and the consumed energy with maximum frequency
  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
 \end{multline} 
  \sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +
  \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
 \end{multline} 
-Where $T_{New}$ and $T_{Old}$ are computed as in EQ(\ref{eq:pnorm}).
+Where $E_\textit{Reduced}$ and $E_\textit{Original}$ are computed using (\ref{eq:energy}) and
+  $T_{New}$ and $T_{Old}$ are computed as in (\ref{eq:pnorm}).
 
 
- While the main 
+While the main 
 goal is to optimize the energy and execution time at the same time, the normalized 
 energy and execution time curves are not in the same direction. According 
 to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the vector  of frequency
 scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
 time simultaneously.  But the main objective is to produce maximum energy
 reduction with minimum execution time reduction.  
 goal is to optimize the energy and execution time at the same time, the normalized 
 energy and execution time curves are not in the same direction. According 
 to the equations~(\ref{eq:enorm}) and~(\ref{eq:pnorm}), the vector  of frequency
 scaling factors $S_1,S_2,\dots,S_N$ reduce both the energy and the execution
 time simultaneously.  But the main objective is to produce maximum energy
 reduction with minimum execution time reduction.  
-
   
 This problem can be solved by making the optimization process for energy and 
 execution time follow the same direction.  Therefore, the equation of the 
   
 This problem can be solved by making the optimization process for energy and 
 execution time follow the same direction.  Therefore, the equation of the 
@@ -465,17 +446,18 @@ normalized execution time is inverted which gives the normalized performance equ
 \begin{figure}
   \centering
   \subfloat[Homogeneous platform]{%
 \begin{figure}
   \centering
   \subfloat[Homogeneous platform]{%
-    \includegraphics[width=.22\textwidth]{fig/homo}\label{fig:r1}}%
-  \qquad%
+    \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
+  
+  
   \subfloat[Heterogeneous platform]{%
   \subfloat[Heterogeneous platform]{%
-    \includegraphics[width=.22\textwidth]{fig/heter}\label{fig:r2}}
+    \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure}
 
 Then, the objective function can be modeled   as finding the maximum distance
 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure}
 
 Then, the objective function can be modeled   as finding the maximum distance
 between the energy curve EQ~(\ref{eq:enorm}) and the  performance
-curve EQ~(\ref{eq:pnorm_inv}) over all available sets of scaling factors.  This
+curve EQ~(\ref{eq:pnor@+eYd162m_inv}) over all available sets of scaling factors.  This
 represents the minimum energy consumption with minimum execution time (maximum 
 performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}). Then the objective
 function has the following form:
 represents the minimum energy consumption with minimum execution time (maximum 
 performance) at the same time, see figure~(\ref{fig:r1}) or figure~(\ref{fig:r2}). Then the objective
 function has the following form:
@@ -503,7 +485,7 @@ platform. It works online during the execution time of the iterative message pas
 It uses information gathered during the first iteration such as the computation time and the 
 communication time in one iteration for each node. The algorithm is executed  after the first 
 iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective 
 It uses information gathered during the first iteration such as the computation time and the 
 communication time in one iteration for each node. The algorithm is executed  after the first 
 iteration and returns a vector of optimal frequency scaling factors   that satisfies the objective 
-function EQ(\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs 
+function (\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs 
 according to the computed scaling factors.  This algorithm is called just once during the execution 
 of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called 
 in the iterative MPI program.
 according to the computed scaling factors.  This algorithm is called just once during the execution 
 of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called 
 in the iterative MPI program.
@@ -523,7 +505,7 @@ computation time of the node $i$ as follows:
   \label{eq:Scp}
  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
 \end{equation}
   \label{eq:Scp}
  Scp_{i} = \frac{\max_{i=1,2,\dots,N}(Tcp_i)}{Tcp_i}
 \end{equation}
-Using the initial  frequency scaling factors computed in EQ(\ref{eq:Scp}), the algorithm computes 
+Using the initial  frequency scaling factors computed in (\ref{eq:Scp}), the algorithm computes 
 the initial frequencies for all nodes as a ratio between the maximum frequency of node $i$  
 and the computation scaling factor $Scp_i$ as follows:
 \begin{equation}
 the initial frequencies for all nodes as a ratio between the maximum frequency of node $i$  
 and the computation scaling factor $Scp_i$ as follows:
 \begin{equation}
@@ -542,11 +524,11 @@ scaling factors starts the search method from these initial frequencies and take
 toward lower frequencies. The algorithm iterates on all left frequencies, from the higher bound until all 
 nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select 
 the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node 
 toward lower frequencies. The algorithm iterates on all left frequencies, from the higher bound until all 
 nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select 
 the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node 
-according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of  
+according to (\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of  
 all other nodes by one gear.
 The new overall energy consumption and execution time are computed according to the new scaling factors. 
 The optimal set of frequency scaling factors is the set that gives the highest distance according to  the objective 
 all other nodes by one gear.
 The new overall energy consumption and execution time are computed according to the new scaling factors. 
 The optimal set of frequency scaling factors is the set that gives the highest distance according to  the objective 
-function EQ(\ref{eq:max}).
+function (\ref{eq:max}).
 
 The plots~(\ref{fig:r1} and \ref{fig:r2}) illustrate the normalized performance and consumed energy for an 
 application running on a homogeneous platform and a heterogeneous platform respectively while increasing the 
 
 The plots~(\ref{fig:r1} and \ref{fig:r2}) illustrate the normalized performance and consumed energy for an 
 application running on a homogeneous platform and a heterogeneous platform respectively while increasing the 
@@ -587,11 +569,12 @@ which results in bigger energy savings.
     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
     \If{(not the first frequency)}
           \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
     \State Round the computed initial frequencies $F_i$ to the closest one available in each node.
     \If{(not the first frequency)}
           \State $F_i \gets F_i+Fdiff_i,~i=1,\dots,N.$
+          \State where $i=1,\dots,N$ means for loop.
     \EndIf 
     \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
     \EndIf 
     \State $T_\textit{Old} \gets max_{~i=1,\dots,N } (Tcp_i+Tcm_i)$
     \State $E_\textit{Original} \gets \sum_{i=1}^{N}{( Pd_i \cdot  Tcp_i)} +\sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}$
-    \State $Dist \gets 0$
-    \State  $Sopt_{i} \gets 1,~i=1,\dots,N. $
+    \State  $Sopt_{i} \gets \frac{Fmax_i}{F_i},~i=1,\dots,N. $
+    \State Computing the initial distance  $Dist \gets\Pnorm(Sopt_i) - \Enorm(Sopt_i) $
     \While {(all nodes not reach their  minimum  frequency)}
         \If{(not the last freq. \textbf{and} not the slowest node)}
         \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
     \While {(all nodes not reach their  minimum  frequency)}
         \If{(not the last freq. \textbf{and} not the slowest node)}
         \State $F_i \gets F_i - Fdiff_i,~i=1,\dots,N.$
@@ -622,7 +605,7 @@ which results in bigger energy savings.
       \If {$(k=1)$}
         \State Gather all times of computation and\newline\hspace*{3em}%
                communication from each node.
       \If {$(k=1)$}
         \State Gather all times of computation and\newline\hspace*{3em}%
                communication from each node.
-        \State Call algorithm from Figure~\ref{HSA} with these times.
+        \State Call algorithm \ref{HSA}.
         \State Compute the new frequencies from the\newline\hspace*{3em}%
                returned optimal scaling factors.
         \State Set the new frequencies to nodes.
         \State Compute the new frequencies from the\newline\hspace*{3em}%
                returned optimal scaling factors.
         \State Set the new frequencies to nodes.
@@ -636,18 +619,18 @@ which results in bigger energy savings.
 \subsection{The verifications of the proposed algorithm}
 \label{sec.verif.algo}
 The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
 \subsection{The verifications of the proposed algorithm}
 \label{sec.verif.algo}
 The precision of the proposed algorithm mainly depends on the execution time prediction model defined in 
-EQ(\ref{eq:perf}) and the energy model computed by EQ(\ref{eq:energy}). 
+(\ref{eq:perf}) and the energy model computed by (\ref{eq:energy}). 
 The energy model is also significantly dependent  on the execution time model because the static energy is 
 linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
 The energy model is also significantly dependent  on the execution time model because the static energy is 
 linearly related the execution time and the dynamic energy is related to the computation time. So, all of 
-the work presented in this paper is based on the execution time model. To verify this model, the predicted 
+the works presented in this paper is based on the execution time model. To verify this model, the predicted 
 execution time was compared to  the real execution time over SimGrid/SMPI simulator, v3.10~\cite{casanova+giersch+legrand+al.2014.versatile}, 
 for all  the NAS parallel benchmarks NPB v3.3 
 \cite{NAS.Parallel.Benchmarks}, running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
 the maximum normalized difference between the predicted execution time  and the real execution time is equal 
 to 0.03 for all the NAS benchmarks.
 
 execution time was compared to  the real execution time over SimGrid/SMPI simulator, v3.10~\cite{casanova+giersch+legrand+al.2014.versatile}, 
 for all  the NAS parallel benchmarks NPB v3.3 
 \cite{NAS.Parallel.Benchmarks}, running class B on 8 or 9 nodes. The comparison showed that the proposed execution time model is very precise, 
 the maximum normalized difference between the predicted execution time  and the real execution time is equal 
 to 0.03 for all the NAS benchmarks.
 
-Since  the proposed algorithm is not an exact method and do not test all the possible solutions (vectors of scaling factors) 
-in the search space and to prove its efficiency, it was compared on small instances to a brute force search algorithm 
+Since  the proposed algorithm is not an exact method and does not test all the possible solutions (vectors of scaling factors) 
+in the search space. To prove its efficiency, it was compared on small instances to a brute force search algorithm 
 that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
 different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
 and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
 that tests all the possible solutions. The brute force algorithm was applied to different NAS benchmarks classes with 
 different number of nodes. The solutions returned by the brute force algorithm and the proposed algorithm were identical 
 and the proposed algorithm was on average 10 times faster than the brute force algorithm. It has a small execution time: 
@@ -659,14 +642,14 @@ vector of frequency scaling factors that gives the results of the next sections.
 
 \section{Experimental results}
 \label{sec.expe}
 
 \section{Experimental results}
 \label{sec.expe}
-To evaluate the efficiency and the overall energy consumption reduction of algorithm~(\ref{HSA})
+To evaluate the efficiency and the overall energy consumption reduction of algorithm~ \ref{HSA}
 it was applied to the NAS parallel benchmarks NPB v3.3. The experiments were executed 
 on the simulator SimGrid/SMPI which offers easy tools to create a heterogeneous platform and run 
 message passing applications over it. The  heterogeneous platform that was used in the experiments, 
 had one core per node because just one  process was executed per node. 
 The heterogeneous platform  was composed of four types of nodes. Each type of nodes had different 
 characteristics such as the maximum CPU frequency, the number of
 it was applied to the NAS parallel benchmarks NPB v3.3. The experiments were executed 
 on the simulator SimGrid/SMPI which offers easy tools to create a heterogeneous platform and run 
 message passing applications over it. The  heterogeneous platform that was used in the experiments, 
 had one core per node because just one  process was executed per node. 
 The heterogeneous platform  was composed of four types of nodes. Each type of nodes had different 
 characteristics such as the maximum CPU frequency, the number of
-available frequencies and the computational power, see table (\ref{table:platform}). The characteristics 
+available frequencies and the computational power, see Table \ref{table:platform}. The characteristics 
 of these different types of  nodes are inspired   from the specifications of real Intel processors. 
 The heterogeneous platform had up to 144 nodes and had nodes from the four types in equal proportions, 
 for example if  a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the constructors 
 of these different types of  nodes are inspired   from the specifications of real Intel processors. 
 The heterogeneous platform had up to 144 nodes and had nodes from the four types in equal proportions, 
 for example if  a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the constructors 
@@ -883,13 +866,12 @@ The other benchmarks such as BT and SP should be executed on $1, 4, 9, 16, 36, 6
   \label{table:res_128n}
 \end{table}
 The overall energy consumption was computed for each instance according to the energy 
   \label{table:res_128n}
 \end{table}
 The overall energy consumption was computed for each instance according to the energy 
-consumption  model EQ(\ref{eq:energy}), with and without applying the algorithm. The 
+consumption  model (\ref{eq:energy}), with and without applying the algorithm. The 
 execution time was also measured for all these experiments. Then, the energy saving 
 and performance degradation percentages were computed for each instance.  
 execution time was also measured for all these experiments. Then, the energy saving 
 and performance degradation percentages were computed for each instance.  
-The results are presented in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
+The results are presented in Tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, 
 \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). All these results are the 
 average values from many experiments for  energy savings and performance degradation.
 \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). All these results are the 
 average values from many experiments for  energy savings and performance degradation.
-
 The tables  show the experimental results for running the NAS parallel benchmarks on different 
 number of nodes. The experiments show that the algorithm reduce significantly the energy 
 consumption (up to 35\%) and tries to limit the performance degradation. They also show that 
 The tables  show the experimental results for running the NAS parallel benchmarks on different 
 number of nodes. The experiments show that the algorithm reduce significantly the energy 
 consumption (up to 35\%) and tries to limit the performance degradation. They also show that 
@@ -915,17 +897,17 @@ compared to the communication times.
 \begin{figure}
   \centering
   \subfloat[Energy saving]{%
 \begin{figure}
   \centering
   \subfloat[Energy saving]{%
-    \includegraphics[width=.2315\textwidth]{fig/energy}\label{fig:energy}}%
-  \quad%
+    \includegraphics[width=.33\textwidth]{fig/energy}\label{fig:energy}}%
+  
   \subfloat[Performance degradation ]{%
   \subfloat[Performance degradation ]{%
-    \includegraphics[width=.2315\textwidth]{fig/per_deg}\label{fig:per_deg}}
+    \includegraphics[width=.33\textwidth]{fig/per_deg}\label{fig:per_deg}}
   \label{fig:avg}
   \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
 \end{figure}
 
 Plots (\ref{fig:energy} and \ref{fig:per_deg}) present the energy saving and performance degradation 
 respectively for all the benchmarks according to the number of used nodes. As shown in the first plot, 
   \label{fig:avg}
   \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
 \end{figure}
 
 Plots (\ref{fig:energy} and \ref{fig:per_deg}) present the energy saving and performance degradation 
 respectively for all the benchmarks according to the number of used nodes. As shown in the first plot, 
-the energy saving percentages of the benchmarks MG, LU, BT and FT are decreased linearly  when the the 
+the energy saving percentages of the benchmarks MG, LU, BT and FT are decreased linearly  when the  
 number of nodes is increased. While for the  EP and SP benchmarks, the energy saving percentage is not 
 affected by the increase of the number of computing nodes, because in these benchmarks there are little or 
 no communications. Finally, the energy saving of the GC benchmark  is significantly decreased when the number 
 number of nodes is increased. While for the  EP and SP benchmarks, the energy saving percentage is not 
 affected by the increase of the number of computing nodes, because in these benchmarks there are little or 
 no communications. Finally, the energy saving of the GC benchmark  is significantly decreased when the number 
@@ -950,9 +932,9 @@ are the following:
 \item 90\% dynamic power  and 10\% static power
 \end{itemize}
 
 \item 90\% dynamic power  and 10\% static power
 \end{itemize}
 
-The NAS parallel benchmarks were executed again over processors that follow the the new power scenarios. 
-The class C of each benchmark was run over 8 or 9 nodes and the results are presented in  tables 
-(\ref{table:res_s1} and \ref{table:res_s2}). These tables show that the energy saving percentage of the 70\%-30\% 
+The NAS parallel benchmarks were executed again over processors that follow the new power scenarios. 
+The class C of each benchmark was run over 8 or 9 nodes and the results are presented in  Tables 
+\ref{table:res_s1} and \ref{table:res_s2}. These tables show that the energy saving percentage of the 70\%-30\% 
 scenario is less for all benchmarks compared to the energy saving of the 90\%-10\% scenario. Indeed, in the latter 
 more dynamic power is consumed when nodes are running on their maximum frequencies, thus, scaling down the frequency 
 of the nodes results in higher energy savings than in the 70\%-30\% scenario. On the other hand,  the performance 
 scenario is less for all benchmarks compared to the energy saving of the 90\%-10\% scenario. Indeed, in the latter 
 more dynamic power is consumed when nodes are running on their maximum frequencies, thus, scaling down the frequency 
 of the nodes results in higher energy savings than in the 70\%-30\% scenario. On the other hand,  the performance 
@@ -960,12 +942,12 @@ degradation percentage is less in the 70\%-30\% scenario  compared to the 90\%-1
 higher static power percentage in the first scenario which makes it more relevant in the overall consumed energy. 
 Indeed, the static energy is related to the execution time and if the performance is  degraded the total consumed 
 static energy is directly increased. Therefore, the proposed algorithm do not scales down much the frequencies of the 
 higher static power percentage in the first scenario which makes it more relevant in the overall consumed energy. 
 Indeed, the static energy is related to the execution time and if the performance is  degraded the total consumed 
 static energy is directly increased. Therefore, the proposed algorithm do not scales down much the frequencies of the 
-nodes  in order to limit the increase of the execution time and thus limiting the effect of the consumed static energy .
+nodes  in order to limit the increase of the execution time and thus limiting the effect of the consumed static energy.
 
 The two new power scenarios are compared to the old one in figure (\ref{fig:sen_comp}). It shows the average of 
 the performance degradation, the energy saving and the distances for all NAS benchmarks of class C running on 8 or 9 nodes. 
 The comparison shows that  the energy saving ratio is proportional to the dynamic power ratio: it is increased 
 
 The two new power scenarios are compared to the old one in figure (\ref{fig:sen_comp}). It shows the average of 
 the performance degradation, the energy saving and the distances for all NAS benchmarks of class C running on 8 or 9 nodes. 
 The comparison shows that  the energy saving ratio is proportional to the dynamic power ratio: it is increased 
-when applying the  90\%-10\% scenario because at maximum frequency the dynamic  energy is the the most relevant 
+when applying the  90\%-10\% scenario because at maximum frequency the dynamic  energy is the  most relevant 
 in the overall consumed energy and can be reduced by lowering the frequency of some processors. On the other hand, 
 the energy saving is decreased when  the 70\%-30\% scenario is used because the dynamic  energy is less relevant in 
 the overall consumed energy and lowering the frequency do not returns big energy savings.
 in the overall consumed energy and can be reduced by lowering the frequency of some processors. On the other hand, 
 the energy saving is decreased when  the 70\%-30\% scenario is used because the dynamic  energy is less relevant in 
 the overall consumed energy and lowering the frequency do not returns big energy savings.
@@ -1037,10 +1019,10 @@ results in less energy saving but less performance degradation.
 \begin{figure}
   \centering
   \subfloat[Comparison the average of the results on 8 nodes]{%
 \begin{figure}
   \centering
   \subfloat[Comparison the average of the results on 8 nodes]{%
-    \includegraphics[width=.22\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
-  \quad%
+    \includegraphics[width=.33\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
+
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
-    \includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
+    \includegraphics[width=.33\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
@@ -1051,12 +1033,12 @@ results in less energy saving but less performance degradation.
 
 \section{Conclusion}
 \label{sec.concl} 
 
 \section{Conclusion}
 \label{sec.concl} 
-In this paper, a new online frequency selecting algorithm have been presented. It selects the best possible vector of frequency scaling factors that gives the maximum distance (optimal tradeoff) between the predicted energy and 
+In this paper, a new online frequency selecting algorithm has been presented. It selects the best possible vector of frequency scaling factors that gives the maximum distance (optimal tradeoff) between the predicted energy and 
 the predicted performance curves for a heterogeneous platform. This algorithm uses a new energy model for measuring  
 and predicting the energy of distributed iterative applications running over heterogeneous 
 platform. To evaluate the proposed method, it  was  applied on the NAS parallel benchmarks and executed over a heterogeneous platform simulated by  Simgrid. The results of the experiments showed that the algorithm reduces up to 35\% the energy consumption of a message passing iterative method while limiting the degradation of the performance. The algorithm also  selects different scaling factors   according to the percentage of the computing and communication times, and according to the values of  the static and  dynamic powers of the CPUs. 
 
 the predicted performance curves for a heterogeneous platform. This algorithm uses a new energy model for measuring  
 and predicting the energy of distributed iterative applications running over heterogeneous 
 platform. To evaluate the proposed method, it  was  applied on the NAS parallel benchmarks and executed over a heterogeneous platform simulated by  Simgrid. The results of the experiments showed that the algorithm reduces up to 35\% the energy consumption of a message passing iterative method while limiting the degradation of the performance. The algorithm also  selects different scaling factors   according to the percentage of the computing and communication times, and according to the values of  the static and  dynamic powers of the CPUs. 
 
-In the near future, this method will be applied to real heterogeneous platforms to evaluate its performance in a real study case. It would also be interesting to evaluate its scalability over large scale heterogeneous platform and measure the energy consumption reduction it can produce. Afterward, We would like  to develop a similar method that is adapted to asynchronous  iterative applications 
+In the near future, this method will be applied to real heterogeneous platforms to evaluate its performance in a real study case. It would also be interesting to evaluate its scalability over large scale heterogeneous platform and measure the energy consumption reduction it can produce. Afterward, we would like  to develop a similar method that is adapted to asynchronous  iterative applications 
 where each task does not wait for others tasks to finish there works. The development of such method might require a new 
 energy model because the number of iterations is not 
 known in advance and depends on the global convergence of the iterative system.
 where each task does not wait for others tasks to finish there works. The development of such method might require a new 
 energy model because the number of iterations is not 
 known in advance and depends on the global convergence of the iterative system.
@@ -1083,6 +1065,6 @@ known in advance and depends on the global convergence of the iterative system.
 %%% End:
 
 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
 %%% End:
 
 % LocalWords:  Fanfakh Charr FIXME Tianhe DVFS HPC NAS NPB SMPI Rauber's Rauber
-% LocalWords:  CMOS EQ EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
+% LocalWords:  CMOS EPSA Franche Comté Tflop Rünger IUT Maréchal Juin cedex
 % LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
 % LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT
 % LocalWords:  de badri muslim MPI TcpOld TcmOld dNew dOld cp Sopt Tcp Tcm Ps
 % LocalWords:  Scp Fmax Fdiff SimGrid GFlops Xeon EP BT
index 554f405a21f2ed3be7fb5c4021c2e24950bab5b5..7b1cf7042e53e287fa63bedb398dad03a6edfb8e 100644 (file)
Binary files a/fig/sen_comp.pdf and b/fig/sen_comp.pdf differ