]> AND Private Git Repository - mpi-energy2.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
some corrections
authorafanfakh <afanfakh@fanfakh.afanfakh>
Wed, 3 Dec 2014 16:05:54 +0000 (17:05 +0100)
committerafanfakh <afanfakh@fanfakh.afanfakh>
Wed, 3 Dec 2014 16:05:54 +0000 (17:05 +0100)
Heter_paper.tex

index 6684ee4ecc1f7f08c69858d4e1535a8e5352ea95..29ff85bd56a5c8548a6d614c1fc8129d07b35cb1 100644 (file)
@@ -448,11 +448,11 @@ normalized execution time is inverted which gives the normalized performance equ
 \begin{figure}
   \centering
   \subfloat[Homogeneous platform]{%
 \begin{figure}
   \centering
   \subfloat[Homogeneous platform]{%
-    \includegraphics[width=.30\textwidth]{fig/homo}\label{fig:r1}}%
+    \includegraphics[width=.33\textwidth]{fig/homo}\label{fig:r1}}%
   
   
   \subfloat[Heterogeneous platform]{%
   
   
   \subfloat[Heterogeneous platform]{%
-    \includegraphics[width=.30\textwidth]{fig/heter}\label{fig:r2}}
+    \includegraphics[width=.33\textwidth]{fig/heter}\label{fig:r2}}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure}
   \label{fig:rel}
   \caption{The energy and performance relation}
 \end{figure}
@@ -898,10 +898,10 @@ compared to the communication times.
 \begin{figure}
   \centering
   \subfloat[Energy saving]{%
 \begin{figure}
   \centering
   \subfloat[Energy saving]{%
-    \includegraphics[width=.30\textwidth]{fig/energy}\label{fig:energy}}%
+    \includegraphics[width=.33\textwidth]{fig/energy}\label{fig:energy}}%
   
   \subfloat[Performance degradation ]{%
   
   \subfloat[Performance degradation ]{%
-    \includegraphics[width=.30\textwidth]{fig/per_deg}\label{fig:per_deg}}
+    \includegraphics[width=.33\textwidth]{fig/per_deg}\label{fig:per_deg}}
   \label{fig:avg}
   \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
 \end{figure}
   \label{fig:avg}
   \caption{The energy and performance for all NAS benchmarks running with difference number of nodes}
 \end{figure}
@@ -1020,10 +1020,10 @@ results in less energy saving but less performance degradation.
 \begin{figure}
   \centering
   \subfloat[Comparison  of the results on 8 nodes]{%
 \begin{figure}
   \centering
   \subfloat[Comparison  of the results on 8 nodes]{%
-    \includegraphics[width=.30\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
+    \includegraphics[width=.33\textwidth]{fig/sen_comp}\label{fig:sen_comp}}%
 
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
 
   \subfloat[Comparison the selected frequency scaling factors of MG benchmark class C running on 8 nodes]{%
-    \includegraphics[width=.30\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
+    \includegraphics[width=.33\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
   \label{fig:comp}
   \caption{The comparison of the three power scenarios}
 \end{figure}  
@@ -1033,18 +1033,22 @@ results in less energy saving but less performance degradation.
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
 
 \subsection{The comparison of the proposed scaling algorithm }
 \label{sec.compare_EDP}
-
 In this section, the scaling  factors selection algorithm
 is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}. 
 They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
 In this section, the scaling  factors selection algorithm
 is compared to Spiliopoulos et al. algorithm \cite{Spiliopoulos_Green.governors.Adaptive.DVFS}. 
 They developed a green governor that regularly applies an online frequency selecting algorithm to reduce the energy consumed by a multicore architecture without degrading much its performance. The algorithm selects the frequencies that minimize the energy and delay products, $EDP=Enegry*Delay$ using the predicted overall energy consumption and execution time delay for each frequency.
- To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al.  algorithm was adapted to  start the search from the 
+To fairly compare both algorithms, the same energy and execution time models, equations (\ref{eq:energy}) and  (\ref{eq:fnew}), were used for both algorithms to predict the energy consumption and the execution times. Also Spiliopoulos et al. algorithm was adapted to  start the search from the 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 
 initial frequencies computed using the equation (\ref{eq:Fint}). The resulting algorithm is an exhaustive search algorithm that minimizes the EDP and has the initial frequencies values as an upper bound.
 
-Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. \textcolor{red}{The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
-on average it is up to 17\% higher for  energy saving compared to their algorithm. The average of performance degradation percentage using our method is higher on average by 3.82\%. The positive values for  energy saving and distance are mean that our method outperform Spiliopoulos et al. method, while the inverse is happen for the negative values. The negative values for performance degradation percentage are mean our method is has the less delay in time, while the positive values mean the inverse. }
+Both algorithms were applied to the parallel NAS benchmarks to compare their efficiency. Table \ref{table:compare_EDP}  presents the results of comparing the execution times and the energy consumptions for both versions of the NAS benchmarks while running the class C of each benchmark over 8 or 9 heterogeneous nodes. The results show that our algorithm gives better energy savings than Spiliopoulos et al. algorithm, 
+on average it results in 29.76\% energy saving while their algorithm returns just 25.75\%. The average of performance degradation percentage is approximately the same for both algorithms, about 4\%. 
+
 
 For all benchmarks, our algorithm outperforms 
 
 For all benchmarks, our algorithm outperforms 
-Spiliopoulos et al. algorithm in term of energy and performance tradeoff \textcolor{red}{(on average it has up to 21\% of distance)}, see figure (\ref{fig:compare_EDP}) because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
+Spiliopoulos et al. algorithm in term of energy and performance tradeoff, see figure (\ref{fig:compare_EDP}), because it maximizes the distance between the energy saving and the performance degradation values while giving the same weight for both metrics. 
+
+
+
+
 \begin{table}[h]
  \caption{Comparing the proposed algorithm}
  \centering
 \begin{table}[h]
  \caption{Comparing the proposed algorithm}
  \centering
@@ -1065,60 +1069,9 @@ Spiliopoulos et al. algorithm in term of energy and performance tradeoff \textco
 \end{table}
 
 
 \end{table}
 
 
-\begin{table}[htb]
-  \caption{Comparing the proposed algorithm}
-  % title of Table
-  \centering
-  \begin{tabular}{|*{4}{l|}}
-    \hline
-    Program       & Energy      & Performance        & Distance\%    \\
-    name          & saving\%    & degradation\%      &              \\
-    \hline
-    CG            &13.31               &22.34                   &10.89       \\
-    \hline 
-    MG            &14.55               &71.39                   &6.29        \\
-   \hline
-    EP            &44.4                    &0.0                         &44.42        \\
-   \hline
-    LU            &-4.79               &-88.58                  &10.12     \\
-    \hline
-    BT                   &16.76                &22.33                   &15.07     \\
-   \hline
-    SP                   &20.52                &-46.64                  &43.37      \\
-   \hline
-    FT            &14.76               &-7.64                   &17.3     \\
-\hline 
-  \end{tabular}
-  \label{table:compare_EDP}
-\end{table}
 
 
-\begin{table}[htb]
-  \caption{Comparing the proposed algorithm}
-  % title of Table
-  \centering
-  \begin{tabular}{|*{4}{l|}}
-    \hline
-    Program       & Energy      & Performance        & Distance\%    \\
-    name          & saving\%    & degradation\%      &              \\
-    \hline
-    CG            &3.67                &1.3                     &2.37     \\
-    \hline 
-    MG            &4.29                &2.67                    &1.62     \\
-   \hline
-    EP            &8.68                &0.01                    &8.67     \\
-   \hline
-    LU            &-1.36           &-3.8                        &2.44     \\
-    \hline
-    BT                   &4.64         &1.44                    &3.2      \\
-   \hline
-    SP                   &4.21         &-2.43                   &6.64     \\
-   \hline
-    FT            &3.99                &-0.21                   &4.2
-    \\
-\hline 
-  \end{tabular}
-  \label{table:compare_EDP}
-\end{table}
+
+
 \begin{figure}[t]
   \centering
    \includegraphics[scale=0.5]{fig/compare_EDP.pdf}
 \begin{figure}[t]
   \centering
    \includegraphics[scale=0.5]{fig/compare_EDP.pdf}