-\textcolor{blue}{
-The static power consumption for one core is the leakage power
-consumption when it is idle. The measured static power of the node,
-as in section \ref{sec.grid5000}, had a collection of power values such as
-all cores static powers and the power consumptions of the other devices. Furthermore, the static power for one core is hard to measured precisely. On the other hand, the core has consumed the static power during
-the communication and computation times. However, the static power consumption becomes more important when the execution time is
-increased using DVFS. Therefore, the objective of this section is to verify the ability of the proposed
-scaling algorithm to select the best frequencies when the static power consumption is changing.
-All the results obtained in the previous sections depend on the measured dynamic power
-consumptions as in table \ref{table:grid5000}. Moreover, the static power consumption for one core is represented by 20\% of the measured dynamic power consumption.
-This assumption is extended in this section to taking into account other ratios for the static power consumption.
-In addition to the previous ratio of the static power consumption, two other static power ratios are used, which are 10\% and 30\% of the measured dynamic power of the core.
-As a result, all of these static power scenarios is denoted as follow:
-\begin{itemize}
-\item 10\% of static power scenario
-\item 20\% of static power scenario
-\item 30\% of static power scenario
-\end{itemize}
-The NAS parallel benchmarks, class D, are executed over Nancy site.
-The number of computing nodes used is 16 nodes distributed between three cluster, which are Graphite, Graphene and Griffon. The NAS benchmarks rerun
-with these two new static power scenarios over one site scenario
-using one core per node. }
+
+In section \ref{sec.grid5000}, since it was not possible to measure the static power consumed by a CPU, the static power was assumed to be equal to 20\% of the measured dynamic power. This power is consumed during the whole execution time, during computation and communication times. Therefore, when the DVFS operations are applied by the scaling algorithm and the CPUs' frequencies lowered, the execution time might increase and consequently the consumed static energy will be increased too.
+
+The aim of this section is to evaluate the scaling algorithm while assuming different values of static powers.
+In addition to the previously used percentage of static power, two new static power ratios, 10\% and 30\% of the measured dynamic power of the core, are used in this section.
+The experiments have been executed with these two new static power scenarios and over the one site one core per node scenario.
+In these experiments, the class D of the NAS parallel benchmarks are executed over Nancy's site. 16 computing nodes from the three sites, Graphite, Graphene and Griffon, where used in this experiment.