\begin{equation}
\label{eq:perf}
\textit T_\textit{new} =
- \max_{i=1,2,\dots,N} (TcpOld_{i} \cdot S_{i}) + MinTcm
+ \max_{i=1,2,\dots,N} ({TcpOld_{i}} \cdot S_{i}) + MinTcm
\end{equation}
where $TcpOld_i$ is the computation time of processor $i$ during the first iteration and $MinTcm$ is the communication time of the slowest processor from the first iteration. The model computes the maximum computation time
with scaling factor from each node added to the communication time of the slowest node, it means only the
E_\textit{Norm} = \frac{E_\textit{Reduced}}{E_\textit{Original}} \\
{} = \frac{ \sum_{i=1}^{N}{(S_i^{-2} \cdot Pd_i \cdot Tcp_i)} +
\sum_{i=1}^{N} {(Ps_i \cdot T_{New})}}{\sum_{i=1}^{N}{( Pd_i \cdot Tcp_i)} +
- \sum_{i=1}^{N} {(Ps_i \cdot T_{Old})}}
+ \sum_{i=1}^{N} {(Ps_i@+eYd162 \cdot T_{Old})}}
\end{multline}
Where $T_{New}$ and $T_{Old}$ are computed as in EQ(\ref{eq:pnorm}).
\section{The scaling factors selection algorithm for heterogeneous platforms }
\label{sec.optim}
- In this section we propose algorithm~\ref{HSA}) which selects the frequency scaling factors vector that gives the best trade-off between minimizing the energy consumption and maximizing the performance of a message passing synchronous iterative application executed on a heterogeneous platform.
- IT works online during the execution time of the iterative message passing program. It uses information gathered during the first iteration such as the computation time and the communication time in one iteration for each node. The algorithm is executed after the first iteration and returns a vector of optimal frequency scaling factors that satisfies the objective function EQ(\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs according to the computed scaling factors. This algorithm is called just once during the execution of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called in the iterative MPI program.
+ In this section we propose algorithm~(\ref{HSA}) which selects the frequency scaling factors vector that gives the best trade-off between minimizing the energy consumption and maximizing the performance of a message passing synchronous iterative application executed on a heterogeneous platform.
+ It works online during the execution time of the iterative message passing program. It uses information gathered during the first iteration such as the computation time and the communication time in one iteration for each node. The algorithm is executed after the first iteration and returns a vector of optimal frequency scaling factors that satisfies the objective function EQ(\ref{eq:max}). The program apply DVFS operations to change the frequencies of the CPUs according to the computed scaling factors. This algorithm is called just once during the execution of the program. Algorithm~(\ref{dvfs}) shows where and when the proposed scaling algorithm is called in the iterative MPI program.
The nodes in a heterogeneous platform have different computing powers, thus while executing message passing iterative synchronous applications, fast nodes have to wait for the slower ones to finish their computations before being able to synchronously communicate with them as in figure (\ref{fig:heter}). These periods are called idle or slack times.
F_{i} = \frac{Fmax_i}{Scp_i},~{i=1,2,\cdots,N}
\end{equation}
If the computed initial frequency for a node is not available in the gears of that node, the computed initial frequency is replaced by the nearest available frequency.
- In figure (\ref{fig:st_freq}), the nodes are sorted by their computing powers in ascending order and the frequencies of the faster nodes are scaled down according to the computed initial frequency scaling factors. The resulting new frequencies are colored in blue in figure (\ref{fig:st_freq}). This set of frequencies can be considered as a higher bound for the search space of the optimal set of frequencies because selecting frequency scaling factors higher than the higher bound will not improve the performance of the application and it will increase its overall energy consumption. Therefore the frequency selecting factors algorithm starts its search method from these initial frequencies and takes a downward search direction. The algorithm iterates on all left frequencies, from the higher bound until all nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of all other nodes by one gear. The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the highest distance according to the objective function EQ(\ref{eq:max}).
-
-
-
-
-
- This algorithm has a small
- execution time: for a heterogeneous cluster composed of four different types of
- nodes having the characteristics presented in table~(\ref{table:platform}), it
- takes \np[ms]{0.04} on average for 4 nodes and \np[ms]{0.15} on average for 144
- nodes. The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the
- number of iterations and $N$ is the number of computing nodes. The algorithm
- needs on average from 12 to 20 iterations to selects the best vector of frequency scaling factors that give the results of the next section.
-
-
- Therefore, there is a small distance between the energy and
- the performance curves in a homogeneous cluster compare to heterogeneous one, for example see the figure(\ref{fig:r1}) and figure(\ref{fig:r2}) . Then the
- algorithm starts to search for the optimal vector of the frequency scaling factors from the selected initial
- frequencies until all node reach their minimum frequencies.
+ In figure (\ref{fig:st_freq}), the nodes are sorted by their computing powers in ascending order and the frequencies of the faster nodes are scaled down according to the computed initial frequency scaling factors. The resulting new frequencies are coloured in blue in figure (\ref{fig:st_freq}). This set of frequencies can be considered as a higher bound for the search space of the optimal vector of frequencies because selecting frequency scaling factors higher than the higher bound will not improve the performance of the application and it will increase its overall energy consumption. Therefore the frequency selecting factors algorithm starts its search method from these initial frequencies and takes a downward search direction. If the algorithm starts to search from the first frequencies of all nodes, regardless the higher bound frequencies, at each step the predicted performance and energy are degreased together, then the best distance be unreachable. This case is similar to homogeneous scaling algorithm when all nodes in the cluster has the same computing power, therefore there is a smaller distance between the performance and the energy curves, while in a heterogeneous cluster the distance is bigger and the energy saving against smaller execution time is higher, as an example see figure~(\ref{fig:r1} and \ref{fig:r2}). The algorithm iterates on all left frequencies, from the higher bound until all nodes reach their minimum frequencies, to compute their overall energy consumption and performance, and select the optimal frequency scaling factors vector. At each iteration the algorithm determines the slowest node according to EQ(\ref{eq:perf}) and keeps its frequency unchanged, while it lowers the frequency of all other nodes by one gear. The new overall energy consumption and execution time are computed according to the new scaling factors. The optimal set of frequency scaling factors is the set that gives the highest distance according to the objective function EQ(\ref{eq:max}).
\begin{figure}[t]
\centering
\includegraphics[scale=0.5]{fig/start_freq}
+
+
\begin{algorithm}
\begin{algorithmic}[1]
% \footnotesize
\section{Experimental results}
\label{sec.expe}
+To evaluate the efficiency and the overall energy consumption reduction of algorithm~\ref{HSA}), it was applied to the NAS parallel benchmarks NPB v3.3
+\cite{44}. The experiments were executed on the simulator SimGrid/SMPI
+v3.10~\cite{casanova+giersch+legrand+al.2014.versatile} which offers easy tools to create a heterogeneous platform and run message passing applications over it. The heterogeneous platform that was used in the experiments, had one core per node because just one process was executed per node. The heterogeneous platform was composed of four types of nodes. Each type of nodes had different characteristics such as the maximum CPU frequency, the number of
+available frequencies and the computational power, see table
+(\ref{table:platform}). The characteristics of these different types of nodes are inspired from the specifications of real Intel processors. The heterogeneous platform had up to 144 nodes and had nodes from the four types in equal proportions, for example if a benchmark was executed on 8 nodes, 2 nodes from each type were used. Since the constructors of CPUs do not specify the dynamic and the static power of their CPUs, for each type of node they were chosen proportionally to its computing power (FLOPS). In the initial heterogeneous platform, while computing with highest frequency, each node consumed power proportional to its computing power which 80\% of it was dynamic power and the rest was 20\% was static power, the same assumption was made in \cite{45,3}. Finally, These nodes were connected via an ethernet network with 1 Gbit/s bandwidth.
-The experiments of this work are executed on the simulator SimGrid/SMPI
-v3.10~\cite{casanova+giersch+legrand+al.2014.versatile}. We are configure the
-simulator to use a heterogeneous cluster with one core per node. The proposed
-heterogeneous cluster has four different types of nodes. Each node in the cluster
-has different characteristics such as the maximum frequency speed, the number of
-available frequencies and dynamic and static powers values, see table
-(\ref{table:platform}). These different types of processing nodes are simulate some
-real Intel processors. The maximum number of nodes that supported by the cluster
-is 144 nodes according to characteristics of some MPI programs of the NAS
-benchmarks v3.3 \cite{44} that used. We are use the same number from each type of nodes when we
-run the iterative MPI programs, for example if we are execute the program on 8 node, there
-are 2 nodes from each type participating in the computation. The dynamic and
-static power values is different from one type to other. Each node has a dynamic
-and static power values proportionally increased to their computing power (FLOPS), for more
-details see the Intel data sheets in \cite{47}. Each node has a percentage of
-80\% for dynamic power and 20\% for static power of the total power
-consumption of a CPU, the same assumption is made in \cite{45,3}. These nodes are
-connected via an ethernet network with 1 Gbit/s bandwidth. The proposed scaling algorithm has a small
+
+\textbf{modify the characteristics table by replacing the similar column with the computing power of the different types of nodes in flops}
++
++
++ The proposed scaling algorithm has a small
+ execution time: for a heterogeneous cluster composed of four different types of
+ nodes having the characteristics presented in table~(\ref{table:platform}), it
-takes \np[ms]{0.04} on average for 4 nodes and \np[ms]{0.15} on average for 144
-nodes. The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the
++takes on average \np[ms]{0.04} for 4 nodes and \np[ms]{0.15} on average for 144
++nodes to compute the best scaling factors vector. The algorithm complexity is $O(F\cdot (N \cdot4) )$, where $F$ is the
+ number of iterations and $N$ is the number of computing nodes. The algorithm
-needs on average from 12 to 20 iterations to selects the best vector of frequency scaling factors that give the results of the next section.
++needs from 12 to 20 iterations to select the best vector of frequency scaling factors that gives the results of the next section.
++
\begin{table}[htb]
\caption{Heterogeneous nodes characteristics}
% title of Table
\begin{tabular}{|*{7}{l|}}
\hline
Node & Similar & Max & Min & Diff. & Dynamic & Static \\
- type & to & Freq. GHz & Freq. GHz & Freq GHz & power & power \\
+ type & to & Freq. GHz & Freq. GHz & Freq. GHz & power & power \\
\hline
1 & core-i3 & 2.5 & 1.2 & 0.1 & 20~w &4~w \\
& 2100T & & & & & \\
\subsection{The experimental results of the scaling algorithm}
\label{sec.res}
-The proposed algorithm was applied to seven MPI programs of the NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) NPB v3.3, which were run with three classes (A, B and C).
-In this experiments we are interested to run the class C, the biggest class compared to A and B, on different number of
-nodes, from 4 to 144 nodes according to the type of the iterative MPI program. Depending on the proposed energy consumption model EQ(\ref{eq:energy}),
- we are measure the energy consumption for all the NAS MPI programs. The dynamic and static power values are used under the same assumption used by \cite{45,3}, we are used a percentage of 80\% for dynamic power and 20\% for static of the total power consumption of a CPU. The heterogeneous nodes in table (\ref{table:platform}) have different simulated computing power (FLOPS), ranked from the node of type 1 with smaller computing power (FLOPS) to the highest computing power (FLOPS) for node of type 4. Therefore, the power values are used proportionally increased from nodes of type 1 to nodes of type 4 that with highest computing power. Then, we are used an assumption that the power consumption is increased linearly when the computing power (FLOPS) of the processor is increased, see \cite{48}.
++<<<<<<< HEAD
+The proposed algorithm was applied to the seven parallel NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) and the benchmarks were executed with the three classes: A,B and C. However, due to the lack of space in this paper, only the results of the biggest class, C, are presented while being run on different number of nodes, ranging from 4 to 128 or 144 nodes depending on the benchmark being executed.
+
+
\begin{table}[htb]
\caption{Running NAS benchmarks on 4 nodes }
\end{tabular}
\label{table:res_128n}
\end{table}
+The overall energy consumption was computed for each instance according to the energy consumption model EQ(\ref{eq:energy}), with and without applying the algorithm. The execution time was also measured for all these experiments. Then, the energy saving and performance degradation percentages were computed for each instance. The results are presented in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}).
+These tables show the experimental results for running the NAS parallel benchmarks on different number of nodes. The experiments show that the algorithm reduce significantly the energy consumption (up to 35\%) and tries to limit the performance degradation. They also show that the energy saving percentage is decreased when the number of the computing nodes is increased. This reduction is due to the increase of the communication times compared to the execution times when the benchmarks are run over a high number of nodes. Indeed, the benchmarks with the same class, C, are executed on different number of nodes, so the computation required for each iteration is divided by the number of computing nodes. On the other hand, more communications are required when increasing the number of nodes so the static energy is increased linearly according to the communication time and the dynamic power is less relevant in the overall energy consumption. Therefore, reducing the frequency with algorithm~\ref{HSA}) have less effect in reducing the overall energy savings. It can also be noticed that for the benchmarks EP and SP that contain little or no communications, the energy savings are not significantly affected with the high number of nodes. No experiments were conducted using bigger classes such as D, because they require a lot of memory(more than 64GB) when being executed by the simulator on one machine.
+The maximum distance between the normalized energy curve and the normalized performance for each instance is also shown in the result tables. It is decreased in the same way as the energy saving percentage. The tables also show that the performance degradation percentage is not significantly increased when the number of computing nodes is increased because the computation times are small when compared to the communication times.
-The results of applying the proposed scaling algorithm to the NAS benchmarks is demonstrated in tables (\ref{table:res_4n}, \ref{table:res_8n}, \ref{table:res_16n}, \ref{table:res_32n}, \ref{table:res_64n} and \ref{table:res_128n}). These tables are show the experimental results for running the NAS benchmarks on different number of nodes. In general the energy saving percent is decreased when the number of the computing nodes is increased. Also the distance is decreased by the same direction of the energy saving. This because when we are run the iterative MPI programs on a big number of nodes the communications times is increased, so the static energy is increased linearly to these times. The tables also show that the performance degradation percent still approximately the same ratio or decreased in a very small present when the number of computing nodes is increased. This is gives a good prove that the proposed algorithm keeping the performance degradation as mush as possible is the same.
+
\begin{figure}
\centering
\subfloat[CG, MG, LU and FT benchmarks]{%
significantly compare to other benchmarks when the number of nodes is
increased. Nevertheless, the average of performance degradation approximately
still the same ratio. This difference is depends on the characteristics of the
- benchmarks such as the computation to communication ratio that has.
+ benchmark such as the computations to communications ratio that has.
\subsection{The results for different power consumption scenarios}
\includegraphics[width=.24\textwidth]{fig/three_scenarios}\label{fig:scales_comp}}
\label{fig:comp}
\caption{The comparison of the three power scenarios}
- \end{figure}
+ \end{figure}
To compare the results of these three powers scenarios, we are take the average of the performance degradation, the energy saving and the distances for all NAS benchmarks running on 8 or 9 nodes of class C, as in figure (\ref{fig:sen_comp}). Thus, according to the average of these results, the energy saving ratio is increased when using a higher percentage for dynamic power (e.g. 90\%-10\% scenario), due to increase in dynamic energy. While the average of energy saving is decreased in 70\%-30\% scenario. Because the static energy consumption is increase. Moreover, the average of distances is more related to energy saving changes. The average of the performance degradation is decreased when using a higher ratio for static power (e.g. 70\%-30\% scenario and 80\%-20\% scenario). The raison behind these relations, that the proposed algorithm optimize both energy consumption and performance in the same time. Therefore, when using a higher ratio for dynamic power the algorithm selecting bigger frequency scaling factors values, more energy saving versus more performance degradation, for example see the figure (\ref{fig:scales_comp}). The inverse happen when using a higher ratio for static power, the algorithm proportionally selects a smaller scaling values, less energy saving versus less performance degradation. This is because the
algorithm is optimizes the static energy consumption that is always related to the execution time.
\subsection{The verifications of the proposed method}
\label{sec.verif}
- The precision of the proposed algorithm mainly depends on the execution time prediction model EQ(\ref{eq:perf}) and the energy model EQ(\ref{eq:energy}). The energy model is significantly depends on the execution time model, that the static energy is related linearly. So, our work is depends mainly on execution time model. To verifying thid model, we are compare the predicted execution time with the real execution time (Simgrid time) values that gathered offline from the NAS benchmarks class B executed on 8 or 9 nodes. The execution time model can predicts the real execution time by maximum normalized error equal to 0.03 for all the NAS benchmarks. The second verification that we are made is for the proposed scaling algorithm to prove its ability to selects the best vector of the frequency scaling factors. Therefore, we are expand the algorithm to test at each iteration the frequency scaling factor of the slowest node with the all available scaling factors of the other nodes, all possible solutions. This version of the algorithm is applied to different NAS benchmarks classes with different number of nodes. The results from the expanded algorithms and the proposed algorithm are identical. While the proposed algorithm is runs by 10 times faster on average compare to the expanded algorithm.
+ The precision of the proposed algorithm mainly depends on the execution time prediction model EQ(\ref{eq:perf}) and the energy model EQ(\ref{eq:energy}). The energy model is significantly depends on the execution time model, that the static energy is related linearly. So, our work is depends mainly on execution time model. To verifying this model, we are compared the predicted execution time with the real execution time (Simgrid time) values that gathered offline from the NAS benchmarks class B executed on 8 or 9 nodes. The execution time model can predicts the real execution time by maximum normalized error equal to 0.03 for all the NAS benchmarks. The second verification that we are made is for the proposed scaling algorithm to prove its ability to selects the best vector of the frequency scaling factors. Therefore, we are expand the algorithm to test at each iteration the frequency scaling factor of the slowest node with the all available scaling factors of the other nodes, all possible solutions. This version of the algorithm is applied to different NAS benchmarks classes with different number of nodes. The results from the expanded algorithms and the proposed algorithm are identical. While the proposed algorithm is runs by 10 times faster on average compare to the expanded algorithm.
\section{Conclusion}
\label{sec.concl}