-with the new frequency scaling factors. These experiments also showed, the energy
-consumption and the execution times of EP and MG benchmarks over these four
-scenarios are not change a lot, because there are no or small communications
-which are increase or decrease the static power consumptions.
-The other benchmarks were showed that their energy consumptions and execution times
-are changed according to the decreasing or increasing in the communication
-times that are different from scenario to other or due to the amount of
-communications in each of them.
-
-The energy saving percentages of all NAS benchmarks, as in figure
-\ref{fig:eng-s-mc}, running over these four scenarios are presented. The figure
-showed the energy saving percentages of NAS benchmarks over two sites multicores scenario is higher
-than two sites once core scenario, because the computation
-times in this scenario is higher than the other one, then the more reduction in the
-dynamic energy can be obtained as mentioned previously. In contrast, in the one site one
-core and one site multicores scenarios the energy saving percentages
-are approximately equivalent, on average they are up to 25\%. In these both scenarios there are a small difference in the
-computations to communications ratio, leading the proposed scaling algorithm
-to selects the frequencies proportionally to these ratios and keeping
-as much as possible the energy saving percentages the same. The
-performance degradation percentages of NAS benchmarks are presented in
-figure \ref{fig:per-d-mc}. This figure indicates that performance
-degradation percentages of running NAS benchmarks over two sites
-multocores scenario, on average is equal to 7\%, gives more performance degradation percentage
-than two sites one core scenario, which on average is equal to 4\%.
-Moreover, using the two sites multicores scenario increased
-the computations to communications ratio, which may be increased
-the overall execution time when the proposed scaling algorithm is applied and scaling down the frequencies.
-The inverse was happened when the benchmarks are executed over one
+with the new frequency scaling factors. I do not understand this sentence}
+\textcolor{red}{It is useless to use multi-cores then!}
+
+
+ These experiments also showed that the energy
+consumption and the execution times of the EP and MG benchmarks do not change significantly over these four
+scenarios because there are no or small communications
+which could increase or decrease the static power consumptions. Contrary to EP and MG, the energy consumptions and the execution times of the rest of the benchmarks vary according to the communication
+times that are different from one scenario to the other.
+
+The energy saving percentages of all NAS benchmarks running over these four scenarios are presented in figure \ref{fig:eng-s-mc}. The figure
+shows that the energy saving percentages are higher over the two sites multi-cores scenario
+than over the two sites one core scenario, because the computation
+times are higher in the first scenario than in the latter, thus, more dynamic energy can be saved by applying the frequency scaling algorithm. \textcolor{red}{why the computation times are higher!}
+
+
+In contrast, in the one site one
+core and one site multi-cores scenarios the energy saving percentages
+are approximately equivalent, on average they are up to 25\%. In both scenarios there are a small difference in the
+computations to communications ratios which leads the proposed scaling algorithm
+to select similar frequencies for both scenarios.
+
+The
+performance degradation percentages of the NAS benchmarks are presented in
+figure \ref{fig:per-d-mc}.
+
+It indicates that the performance
+degradation percentages for the NAS benchmarks are higher over the two sites
+multi-cores scenario than over the two sites one core scenario, equal on average to 7\% and 4\% respectively.
+Moreover, using the two sites multi-cores scenario increased
+the computations to communications ratio, which may increase
+the overall execution time when the proposed scaling algorithm is applied and the frequencies scaled down.
+
+
+When the benchmarks are executed over the one