From: jean-claude Date: Thu, 29 Oct 2015 10:44:37 +0000 (+0100) Subject: figures X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/commitdiff_plain/43740254c86b1d4323f48f5d9d015b172a58c1c0?ds=sidebyside;hp=-c figures --- 43740254c86b1d4323f48f5d9d015b172a58c1c0 diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index 23a0c01..3e1bb46 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -1003,7 +1003,7 @@ algorithm select smaller frequencies for the powerful nodes which produces less energy consumption and thus more energy saving. The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%. -\begin{figure} +\begin{figure*}[t] \centering \subfloat[The energy reduction while executing the NAS benchmarks over different scenarios ]{% \includegraphics[width=.48\textwidth]{fig/eng_s.eps}\label{fig:eng_s}} \hspace{0.4cm}% @@ -1014,7 +1014,7 @@ The best energy saving percentage was obtained in the one site scenario with 16 \includegraphics[width=.48\textwidth]{fig/dist.eps}\label{fig:dist}} \label{fig:exp-res} \caption{The experimental results of different scenarios} -\end{figure} +\end{figure*} Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios. The performance degradation percentage for the benchmarks running on two sites with 16 or 32 nodes is on average equal to 8.3\% or 4.7\% respectively. @@ -1114,7 +1114,7 @@ in figure \ref{fig:dist-mc}. These tradeoff distance between energy consumption -\begin{figure} +\begin{figure*}[t] \centering \subfloat[The energy saving of running NAS benchmarks over one core and multicores scenarios]{% \includegraphics[width=.48\textwidth]{fig/eng_s_mc.eps}\label{fig:eng-s-mc}} \hspace{0.4cm}% @@ -1125,7 +1125,7 @@ in figure \ref{fig:dist-mc}. These tradeoff distance between energy consumption \includegraphics[width=.48\textwidth]{fig/dist_mc.eps}\label{fig:dist-mc}} \label{fig:exp-res} \caption{The experimental results of one core and multi-cores scenarios} -\end{figure} +\end{figure*} @@ -1205,7 +1205,7 @@ The experimental results, the energy saving, performance degradation and tradeof presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively. -\begin{figure} +\begin{figure*}[t] \centering \subfloat[The energy reduction induced by the Maxdist method and the EDP method]{% \includegraphics[width=.48\textwidth]{fig/edp_eng}\label{fig:edp-eng}} \hspace{0.4cm}% @@ -1215,7 +1215,7 @@ presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp- \includegraphics[width=.48\textwidth]{fig/edp_dist}\label{fig:edp-dist}} \label{fig:edp-comparison} \caption{The comparison results} -\end{figure} +\end{figure*} As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios. The proposed algorithm gives better results than EDP because it