From: jean-claude <jean-claude.charr@univ-fcomte.fr>
Date: Thu, 29 Oct 2015 10:44:37 +0000 (+0100)
Subject: figures
X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/commitdiff_plain/43740254c86b1d4323f48f5d9d015b172a58c1c0?ds=sidebyside;hp=8a513654da9e95b25286414c6ac1261115fb9e9f

figures
---

diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex
index 23a0c01..3e1bb46 100644
--- a/mpi-energy2-extension/Heter_paper.tex
+++ b/mpi-energy2-extension/Heter_paper.tex
@@ -1003,7 +1003,7 @@ algorithm  select smaller frequencies for the powerful nodes which
 produces less energy consumption and thus more energy saving.
 The best energy saving percentage was obtained in the one site scenario with 16 nodes, the energy consumption was on average reduced up to 30\%.
 
-\begin{figure}
+\begin{figure*}[t]
   \centering
   \subfloat[The energy reduction while executing the NAS benchmarks over different scenarios ]{%
     \includegraphics[width=.48\textwidth]{fig/eng_s.eps}\label{fig:eng_s}} \hspace{0.4cm}%
@@ -1014,7 +1014,7 @@ The best energy saving percentage was obtained in the one site scenario with 16
     \includegraphics[width=.48\textwidth]{fig/dist.eps}\label{fig:dist}}
   \label{fig:exp-res}
   \caption{The experimental results of different scenarios}
-\end{figure}
+\end{figure*}
 Figure \ref{fig:per_d} presents the performance degradation percentages for all benchmarks over the two scenarios.
 The performance degradation percentage for the benchmarks running on two sites  with
 16 or 32  nodes is on average equal to 8.3\% or 4.7\% respectively. 
@@ -1114,7 +1114,7 @@ in figure \ref{fig:dist-mc}. These  tradeoff distance between energy consumption
 
 
 
-\begin{figure}
+\begin{figure*}[t]
   \centering
     \subfloat[The energy saving of running NAS benchmarks over one core and multicores scenarios]{%
     \includegraphics[width=.48\textwidth]{fig/eng_s_mc.eps}\label{fig:eng-s-mc}} \hspace{0.4cm}%
@@ -1125,7 +1125,7 @@ in figure \ref{fig:dist-mc}. These  tradeoff distance between energy consumption
     \includegraphics[width=.48\textwidth]{fig/dist_mc.eps}\label{fig:dist-mc}}
   \label{fig:exp-res}
   \caption{The experimental results of one core and multi-cores scenarios}
-\end{figure}
+\end{figure*}
 
 
 
@@ -1205,7 +1205,7 @@ The experimental results, the energy saving, performance degradation and tradeof
 presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-dist} respectively.
 
 
-\begin{figure}
+\begin{figure*}[t]
   \centering
   \subfloat[The energy reduction induced by the Maxdist method and the EDP method]{%
     \includegraphics[width=.48\textwidth]{fig/edp_eng}\label{fig:edp-eng}} \hspace{0.4cm}%
@@ -1215,7 +1215,7 @@ presented in the figures \ref{fig:edp-eng}, \ref{fig:edp-perf} and \ref{fig:edp-
     \includegraphics[width=.48\textwidth]{fig/edp_dist}\label{fig:edp-dist}}
   \label{fig:edp-comparison}
   \caption{The comparison results}
-\end{figure}
+\end{figure*}
 
 As shown in these figures, the proposed frequencies selection algorithm, Maxdist, outperforms the EDP algorithm in terms of energy consumption reduction and performance for all of the benchmarks executed over the two scenarios. 
 The proposed algorithm gives better results than EDP  because it