From: jean-claude Date: Mon, 26 Oct 2015 10:38:04 +0000 (+0100) Subject: correction X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/commitdiff_plain/71a2ec18276dbbb8ee0dc07e9a390d558eda81d7?ds=sidebyside correction --- diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index 928c20b..b6839ce 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -224,11 +224,9 @@ consumption while minimizing the degradation of the program's performance. Section~\ref{sec.optim} details the proposed frequencies selecting algorithm. Section~\ref{sec.expe} presents the results of applying the algorithm on the NAS parallel benchmarks and executing them on the grid'5000 testbed. -%It shows the results of running different scenarios using multi-cores and one core per node and comparing them. -It also evaluates the algorithm over three different power scenarios. Moreover, it shows the +It also evaluates the algorithm over multi-cores per node architectures and over three different power scenarios. Moreover, it shows the comparison results between the proposed method and an existing method. Finally, in Section~\ref{sec.concl} the paper ends with a summary and some future works. - \section{Related works} \label{sec.relwork} @@ -1242,7 +1240,7 @@ To evaluate the proposed method on a real heterogeneous grid platform, it was ap NAS parallel benchmarks and the class D instance was executed over the grid'5000 testbed platform. The experimental results showed that the algorithm reduces on average 30\% of the energy consumption for all the NAS benchmarks while only degrading by 3.2\% on average the performance. -The Maxdist algorithm was also evaluated in different scenarios that vary in the distribution of the computing nodes between different clusters' sites or between using one core and multi-cores per node or in the values of the consumed static power. The algorithm selects different vector of frequencies according to the +The Maxdist algorithm was also evaluated in different scenarios that vary in the distribution of the computing nodes between different clusters' sites or use multi-cores per node architecture or consume different static power values. The algorithm selects different vector of frequencies according to the computations and communication times ratios, and the values of the static and measured dynamic powers of the CPUs. Finally, the proposed algorithm was compared to another method that uses the well known energy and delay product as an objective function. The comparison results showed