From: afanfakh Date: Mon, 30 May 2016 17:39:55 +0000 (+0200) Subject: some changes X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/mpi-energy2.git/commitdiff_plain/fe2e14acbe9cfb21323577b06ba412e8ea6b2a75 some changes --- diff --git a/mpi-energy2-extension/Heter_paper.tex b/mpi-energy2-extension/Heter_paper.tex index 329d526..fabd22e 100644 --- a/mpi-energy2-extension/Heter_paper.tex +++ b/mpi-energy2-extension/Heter_paper.tex @@ -512,7 +512,7 @@ static energies for $M_i$ processors in $N$ clusters. It is computed as follows E = \sum_{i=1}^{N} \sum_{i=1}^{M_i} {(S_{ij}^{-2} \cdot \Pd[ij] \cdot \Tcp[ij])} + \sum_{i=1}^{N} \sum_{j=1}^{M_i} (\Ps[ij] \cdot {} \\ (\mathop{\max_{i=1,\dots N}}_{j=1,\dots,M_i}({\Tcp[ij]} \cdot S_{ij}) - +\mathop{\min_{j=1,\dots M_i}} (\Tcm[hj]) )) + +\mathop{\min_{j=1,\dots M_h}} (\Tcm[hj]) )) \end{multline} @@ -596,13 +596,13 @@ computed as in (\ref{eq:eorginal}). While the main goal is to optimize the energy and execution time at the same time, the normalized energy and execution time curves do not evolve (increase/decrease) in the same way. According to (\ref{eq:pnorm}) and (\ref{eq:enorm}), the -vector of frequency scaling factors $S_1,S_2,\dots,S_N$ reduces both the energy +vector of frequency scaling factors $S_{11},S_{12},\dots,S_{NM_i}$ reduces both the energy and the execution time, but the main objective is to produce maximum energy reduction with minimum execution time reduction. This problem can be solved by making the optimization process for energy and execution time follow the same evolution according to the vector of scaling factors -$(S_{11}, S_{12},\dots, S_{NM})$. Therefore, the equation of the +$(S_{11}, S_{12},\dots, S_{NM_i})$. Therefore, the equation of the normalized execution time is inverted which gives the normalized performance equation, as follows: \begin{equation} @@ -1033,7 +1033,7 @@ nodes when the communications occur in high speed network does not decrease the communication ratio. The performance degradation percentage of the EP benchmark after applying the scaling factors selection algorithm is the highest in comparison to -the other benchmarks. Indeed, in the EP benchmark, there are no communication and slack times and its +the other benchmarks. Indeed, in the EP benchmark, there are no communication and no slack times and its performance degradation percentage only depends on the frequencies values selected by the algorithm for the computing nodes. The rest of the benchmarks showed different performance degradation percentages which decrease when the communication times increase and vice versa. @@ -1098,7 +1098,7 @@ Scenario name & Cluster name & Nodes per cluster & The execution times for most of the NAS benchmarks are higher over the multi-core per node scenario than over the single core per node scenario. Indeed, - the communication times are higher in the one site multi-core scenario than in the latter scenario because all the cores of a node share the same node network link which can be saturated when running communication bound applications. Moreover, the cores of a node share the memory bus which can be also saturated and become a bottleneck. + the communication times are higher in the multi-core scenario than in the latter scenario because all the cores of a node share the same node network link which can be saturated when running communication bound applications. Moreover, the cores of a node share the memory bus which can be also saturated and become a bottleneck. Moreover, the energy consumptions of the NAS benchmarks are lower over the one core scenario than over the multi-core scenario because the first scenario had less execution time than the latter which results in less static energy being consumed.