X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/predictops.git/blobdiff_plain/1eeee0f8e0d074a2b4453ef5e9f880189d89a64f..2c5695839a5064f584ffeaba557020ab3270b7b9:/predictops/learn/preprocessing.py diff --git a/predictops/learn/preprocessing.py b/predictops/learn/preprocessing.py index 5400d1d..a878a82 100644 --- a/predictops/learn/preprocessing.py +++ b/predictops/learn/preprocessing.py @@ -1,8 +1,10 @@ from configparser import ConfigParser +from csv import DictReader from datetime import datetime, timedelta from itertools import chain from logging import getLogger from logging.config import fileConfig +from os import listdir from pathlib import Path import numpy as np @@ -46,6 +48,16 @@ class Preprocessing: else: self._features = set(chain.from_iterable([tuple(u.keys()) for u in [*dict_features.values()]])) + for csv_file in listdir(): + with open(csv_file, "r") as f: + reader = DictReader(f, delimiter=',') + dico_features = {{row['name']: row['type'] # qualitative (2) or quantitative (1) + } + for row in reader if row['name'] in self._features} + + self._features = {feat : None for feat in self._features} + print(self._features) + exit() @property @@ -134,7 +146,11 @@ class Preprocessing: elif self._config['PREPROCESSING']['fill_method'] == 'spline': self._dataframe = self._dataframe.interpolate(method='spline', order=self._config['PREPROCESSING'].getint('order')) - self._dataframe = self._dataframe.fillna(method='bfill') + + # Uncomment this line to fill NaN values at the beginning of the + # dataframe. This may not be a good idea, especially for features + # that are available only for recent years, e.g., air quality + #self._dataframe = self._dataframe.fillna(method='bfill') self._dataframe = self._dataframe.drop([k.to_pydatetime() for k in self._dataframe.T