X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/predictops.git/blobdiff_plain/4b6d71d96bb92791cc31640e5f30378ae6fe63e4..20a117b07643f7b3ef305d1e7a6f62f05e33698e:/predictops/learn/preprocessing.py diff --git a/predictops/learn/preprocessing.py b/predictops/learn/preprocessing.py index 49d7ef8..939a7fa 100644 --- a/predictops/learn/preprocessing.py +++ b/predictops/learn/preprocessing.py @@ -48,16 +48,23 @@ class Preprocessing: else: self._features = set(chain.from_iterable([tuple(u.keys()) for u in [*dict_features.values()]])) - csv_files = Path.cwd() / 'config' / 'features' - self._features = {feat : None for feat in self._features} - for csv_file in listdir(csv_files): - with open(csv_files / csv_file, "r") as f: - reader = DictReader(f, delimiter=',') - for row in reader: - if row['name'] in self._features: - self._features[row['name']] = row['type'] - print(self._features) - exit() + feature_files = Path.cwd() / 'config' / 'features' + self._features = {feat : {'numerical': False} for feat in self._features} + for feature_file in listdir(feature_files): + if feature_file.endswith('csv'): + with open(feature_files / feature_file , "r") as f: + reader = DictReader(f, delimiter=',') + typed_names = {row['name']: row['type'] for row in reader} + for feature in self._features: + if feature.split('_')[0] in typed_names: + self._features[feature]['type'] = int(typed_names[feature.split('_')[0]]) + elif feature_file.endswith('cfg'): + config = ConfigParser() + config.read(feature_files / feature_file) + for section in config: + if config.has_option(section, 'numerical'): + self._features[section]['numerical'] = config[section].getboolean('numerical') + @property @@ -137,21 +144,37 @@ class Preprocessing: logger.info("Creating feature dataframe from feature dictionary") self._dataframe = pd.DataFrame.from_dict(self.full_dict, orient='index') - logger.info("Filling NaN values in the feature dataframe") - + logger.info("Filling NaN numerical values in the feature dataframe") + # We interpolate (linearly or with splines) only numerical columns + numerical_columns = [k for k in self._features if self._features[k]['type'] == 1 + or (self._features[k]['type'] == 3 and self._features[k]['numerical'])] + # The interpolation if self._config['PREPROCESSING']['fill_method'] == 'propagate': - self._dataframe = self._dataframe.fillna(method='ffill') + self._dataframe[numerical_columns] =\ + self._dataframe[numerical_columns].fillna(method='ffill') elif self._config['PREPROCESSING']['fill_method'] == 'linear': - self._dataframe = self._dataframe.interpolate() + self._dataframe[numerical_columns] =\ + self._dataframe[numerical_columns].interpolate() elif self._config['PREPROCESSING']['fill_method'] == 'spline': - self._dataframe = self._dataframe.interpolate(method='spline', - order=self._config['PREPROCESSING'].getint('order')) + self._dataframe[numerical_columns] =\ + self._dataframe[numerical_columns].interpolate(method='spline', + order=self._config['PREPROCESSING'].getint('order')) + + # For the categorical columns, NaN values are filled by duplicating + # the last known value (forward fill method) + logger.info("Filling NaN categorical values in the feature dataframe") + categorical_columns = [k for k in self._features if self._features[k]['type'] == 2 + or (self._features[k]['type'] == 3 and not self._features[k]['numerical'])] + self._dataframe[categorical_columns] =\ + self._dataframe[categorical_columns].fillna(method='ffill') # Uncomment this line to fill NaN values at the beginning of the # dataframe. This may not be a good idea, especially for features # that are available only for recent years, e.g., air quality #self._dataframe = self._dataframe.fillna(method='bfill') + # Dropping rows that are not related to our datetime window (start/ + # step / end) self._dataframe = self._dataframe.drop([k.to_pydatetime() for k in self._dataframe.T if k not in self._datetimes])