X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/predictops.git/blobdiff_plain/66b4627c14e9f89a2e5ab73bbf48819f8f3a1455..4b6d71d96bb92791cc31640e5f30378ae6fe63e4:/predictops/learn/preprocessing.py diff --git a/predictops/learn/preprocessing.py b/predictops/learn/preprocessing.py index 5400d1d..49d7ef8 100644 --- a/predictops/learn/preprocessing.py +++ b/predictops/learn/preprocessing.py @@ -1,8 +1,10 @@ from configparser import ConfigParser +from csv import DictReader from datetime import datetime, timedelta from itertools import chain from logging import getLogger from logging.config import fileConfig +from os import listdir from pathlib import Path import numpy as np @@ -46,6 +48,16 @@ class Preprocessing: else: self._features = set(chain.from_iterable([tuple(u.keys()) for u in [*dict_features.values()]])) + csv_files = Path.cwd() / 'config' / 'features' + self._features = {feat : None for feat in self._features} + for csv_file in listdir(csv_files): + with open(csv_files / csv_file, "r") as f: + reader = DictReader(f, delimiter=',') + for row in reader: + if row['name'] in self._features: + self._features[row['name']] = row['type'] + print(self._features) + exit() @property @@ -134,7 +146,11 @@ class Preprocessing: elif self._config['PREPROCESSING']['fill_method'] == 'spline': self._dataframe = self._dataframe.interpolate(method='spline', order=self._config['PREPROCESSING'].getint('order')) - self._dataframe = self._dataframe.fillna(method='bfill') + + # Uncomment this line to fill NaN values at the beginning of the + # dataframe. This may not be a good idea, especially for features + # that are available only for recent years, e.g., air quality + #self._dataframe = self._dataframe.fillna(method='bfill') self._dataframe = self._dataframe.drop([k.to_pydatetime() for k in self._dataframe.T