X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/predictops.git/blobdiff_plain/964c1b87a6996c828c150a2b06a827350a4c2b10..a2faba3f0797b7be72d0c8fa9cb9db67456136d6:/predictops/learn/preprocessing.py?ds=sidebyside diff --git a/predictops/learn/preprocessing.py b/predictops/learn/preprocessing.py index 106a626..885aad3 100644 --- a/predictops/learn/preprocessing.py +++ b/predictops/learn/preprocessing.py @@ -48,28 +48,22 @@ class Preprocessing: self._features = set(chain.from_iterable([tuple(u.keys()) for u in [*dict_features.values()]])) - feature_files = Path.cwd() / 'config' / 'features' - self._features = {feat : {'numerical': False} for feat in self._features} - for feature_file in listdir(feature_files): - if feature_file.endswith('csv'): - with open(feature_files / feature_file , "r") as f: - reader = DictReader(f, delimiter=',') - typed_names = {row['name']: row['type'] for row in reader} - for feature in self._features: - if feature.split('_')[0] in typed_names: - self._features[feature]['type'] = int(typed_names[feature.split('_')[0]]) - elif feature_file.endswith('cfg'): + #feature_files = Path.cwd() / 'config' / 'features' + self._features = {feat : {'numerical': False, 'categorical': False} + for feat in self._features} + + for feature in self._config['FEATURES']: + if self._config['FEATURES'][feature]: + feature_file = self._config['FEATURE_CONFIG'][feature] config = ConfigParser() - config.read(feature_files / feature_file) + config.read(feature_file) for section in config: if config.has_option(section, 'numerical'): self._features[section]['numerical'] = config[section].getboolean('numerical') + self._features[section]['categorical'] = config[section].getboolean('categorical') - self._numerical_columns = [k for k in self._features if self._features[k]['type'] == 1 - or (self._features[k]['type'] == 3 and self._features[k]['numerical'])] - - self._categorical_columns = [k for k in self._features if self._features[k]['type'] == 2 - or (self._features[k]['type'] == 3 and not self._features[k]['numerical'])] + self._numerical_columns = [k for k in self._features if self._features[k]['numerical']] + self._categorical_columns = [k for k in self._features if self._features[k]['categorical']] @@ -172,12 +166,11 @@ class Preprocessing: # Dropping rows that are not related to our datetime window (start/ # step / end) logger.info("Dropping rows that are not related to our datetime window") - self._dataframe['datetime'] =\ - self._dataframe.apply(lambda x: datetime(int(x.year), int(x.month), int(x.dayInMonth), int(x.hour)), axis=1) + dates = tuple((x.year, x.month, x.day, x.hour) for x in self._datetimes) self._dataframe['row_ok'] =\ - self._dataframe.apply(lambda x:x.datetime in self._datetimes, axis=1) + self._dataframe.apply(lambda x: (int(x.year), int(x.month), int(x.dayInMonth), int(x.hour)) in dates, axis=1) self._dataframe = self._dataframe[self._dataframe['row_ok']] - self._dataframe = self._dataframe.drop(['datetime', 'row_ok'], axis=1) + self._dataframe = self._dataframe.drop(['row_ok'], axis=1) logger.info("Rows dropped")