X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/predictops.git/blobdiff_plain/d6469a787c80df2c938f21d4ae107b84213e238f..2c5695839a5064f584ffeaba557020ab3270b7b9:/predictops/learn/preprocessing.py?ds=inline diff --git a/predictops/learn/preprocessing.py b/predictops/learn/preprocessing.py index 833e483..a878a82 100644 --- a/predictops/learn/preprocessing.py +++ b/predictops/learn/preprocessing.py @@ -1,6 +1,10 @@ +from configparser import ConfigParser +from csv import DictReader +from datetime import datetime, timedelta from itertools import chain from logging import getLogger from logging.config import fileConfig +from os import listdir from pathlib import Path import numpy as np @@ -18,19 +22,22 @@ class Preprocessing: - Missing datetimes are added first with np.NaN feature values, - The dataframe is then constructed based on the filled feature dictionary, - NaN values are then filled with last known values. - ''' - def __init__(self, dict_features, - start, end, timestep, - features = None): + + def __init__(self, config_file = None, dict_features = None, features = None): ''' Constructor that defines all needed attributes and collects features. ''' - logger.info("Entering NaN values in the feature dataframe") + self._config = ConfigParser() + self._config.read(config_file) + + self._start = datetime.strptime(self._config['DATETIME']['start'], + '%m/%d/%Y %H:%M:%S') + self._end = datetime.strptime(self._config['DATETIME']['end'], + '%m/%d/%Y %H:%M:%S') + self._timestep = timedelta(hours = + self._config['DATETIME'].getfloat('hourStep')) self._dict_features = dict_features - self._start = start - self._end = end - self._timestep = timestep self._full_dict = None self._dataframe = None self._datetimes = [] @@ -41,6 +48,43 @@ class Preprocessing: else: self._features = set(chain.from_iterable([tuple(u.keys()) for u in [*dict_features.values()]])) + for csv_file in listdir(): + with open(csv_file, "r") as f: + reader = DictReader(f, delimiter=',') + dico_features = {{row['name']: row['type'] # qualitative (2) or quantitative (1) + } + for row in reader if row['name'] in self._features} + + self._features = {feat : None for feat in self._features} + print(self._features) + exit() + + + @property + def start(self): + return self._start + + @start.setter + def start(self, x): + self._start = x + + + @property + def end(self): + return self._end + + @end.setter + def end(self, x): + self._end = x + + + @property + def timestep(self): + return self._timestep + + @timestep.setter + def timestep(self, x): + self._timestep = x def _fill_dict(self): @@ -94,14 +138,26 @@ class Preprocessing: self._dataframe = pd.DataFrame.from_dict(self.full_dict, orient='index') logger.info("Filling NaN values in the feature dataframe") - #TODO: add other filling methods like linear interpolation - self._dataframe = self._dataframe.fillna(method='ffill') - self._dataframe = self._dataframe.fillna(method='bfill') + + if self._config['PREPROCESSING']['fill_method'] == 'propagate': + self._dataframe = self._dataframe.fillna(method='ffill') + elif self._config['PREPROCESSING']['fill_method'] == 'linear': + self._dataframe = self._dataframe.interpolate() + elif self._config['PREPROCESSING']['fill_method'] == 'spline': + self._dataframe = self._dataframe.interpolate(method='spline', + order=self._config['PREPROCESSING'].getint('order')) + + # Uncomment this line to fill NaN values at the beginning of the + # dataframe. This may not be a good idea, especially for features + # that are available only for recent years, e.g., air quality + #self._dataframe = self._dataframe.fillna(method='bfill') + self._dataframe = self._dataframe.drop([k.to_pydatetime() for k in self._dataframe.T if k not in self._datetimes]) return self._dataframe + @dataframe.setter def dataframe(self, df): self._dataframe = df