-\begin{frame}{Performances} % Slide 11
- % 1 - Taux d'erreur en terme de classification
- % 2 - Gain en temps d'execution / speedup curve
+\begin{frame}{Finding Optimal Parameters} % Slide 10
+ % 1 - Quels parametres et pourquoi ?
+ \begin{femtoBlock}
+ {What parameters can be optimized?\\}
+ \begin{itemize}
+ \item Currently
+ \begin{itemize}
+ \item Pitch of the Read-Out
+ \item Amplitude parameters $\rightarrow \delta; \beta; \phi_0$
+ \item Regression parameter $\rightarrow \lambda$
+ \end{itemize}
+ \item Next
+ \begin{itemize}
+ \item Number of nodes significantly improving the solution (threshold)
+ \item Input data filter (convolution filter for images)
+ \end{itemize}
+ \end{itemize}
+ \centering
+ Potentially any parameter can be optimized
+ \end{femtoBlock}
+ \smallskip
+ \begin{femtoBlock}
+ {Optimization heuristics\\}
+ \begin{itemize}
+ \item Currently $\rightarrow$ simulated annealing \\
+ {\small (probabilistic global search controlled by a cooling schedule)}
+ \item Next $\rightarrow$ other metaheuristics like evolutionary algorithms
+ \end{itemize}
+ \end{femtoBlock}