-\begin{frame}{Comparison with other approaches} % Slide 13
- % 1 - Convolutional Neural Networks
- % 2 - Reservoir en pipeline (papier de 2015)
+\begin{frame}{Performances of the parallel code} % Slide 12
+ \begin{femtoBlock}
+ {Classification error for 10000 images\\}
+ \begin{itemize}
+ \item 1000 reservoirs of 2 neurons $\rightarrow$ error : 3.85\%\\
+ \item 1 reservoir of 2000 neurons $\rightarrow$ error : 7.14\%
+ \end{itemize}
+ \end{femtoBlock}
+ \begin{femtoBlock}
+ {Speedup\\}
+ \centering
+ \includegraphics[width=7.25cm]{speedup.pdf}
+ \end{femtoBlock}
+\end{frame}
+
+\begin{frame}{Exploring ways to improve the results} % Slide 13
+ \begin{femtoBlock}
+ {Using the parallel NTC code\\}
+ \begin{itemize}
+ \item using many small reservoirs and using one read out\\
+ \item using a simple 3x3 convolution
+ \item best result: around 3\%
+ \end{itemize}
+ % 1 - Partitionnement d'un reservoir en plein de petits sous-reservoirs
+ % 2 - Pre-traitement pour convolution
+ \end{femtoBlock}
+ \smallskip
+ \begin{femtoBlock}
+ {Using the Ogger library\\}
+ % Parler des travaux de Niels
+ % 1 - Augmentation du jeu de donnees par des images deformees
+ % 2 - Comites de reservoir
+ \end{femtoBlock}