From: couturie Date: Thu, 29 Oct 2015 01:36:39 +0000 (-0400) Subject: new X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/presentation_reservoir.git/commitdiff_plain/8ea5e6b8bd07463925587aafb8b881c24408262f?ds=sidebyside new --- diff --git a/reservoir.tex b/reservoir.tex index d3ca368..022e525 100644 --- a/reservoir.tex +++ b/reservoir.tex @@ -173,26 +173,68 @@ Application on the MNIST problem} % Grandes lignes a partir du pdf de Laurent \begin{femtoBlock} {Main lines\\} + \begin{itemize} + \item Numerical integration to compute the nonlinear transient response + \item[] $\Rightarrow$ computation of matrices $A$ and $B$ + \item Computation of the Readout + \item Test of the solution (cross validation) + \end{itemize} \end{femtoBlock} % Inconvenient de ce code => temps de calcul \begin{femtoBlock} - {Computation time\\} + {Computation time\\} + 12 min for 500 words recognition (2013) \end{femtoBlock} \end{frame} \section{Parallelization and optimization} \begin{frame}{Parallelization Scheme} % Slide 8 + \begin{itemize} + \item Port of the code in C++ + \item Parallelization with MPI (Message Passing Interface) + \item Computation of data response (sound, image) is independent so + it can be parallelized + \item Different regression tests are also independent + \item Test of new idea? First test with matlab and then adapt to C++ + with MPI + \end{itemize} % 1 - Comment le paralleliser % 2 - Langage et bibliotheque \end{frame} \begin{frame}{Finding the Optimal Parameters} % Slide 9 % 1 - Quels parametres et pourquoi ? + \begin{femtoBlock} + {What parameters can be optimized?\\} + Currently: + \begin{itemize} + \item Pitch + \item Delta + \item Beta + \item Phi + \item Lambda + \end{itemize} + Next: + \begin{itemize} + \item Number of nodes that significantly improve the solution (threshold) + \item Form of a convolutional filter? + \item Potentially any parameters + \end{itemize} + + \end{femtoBlock} \end{frame} \begin{frame}{Finding the Optimal Parameters} % Slide 10 % 2 - Optimisation par recuit simule + \begin{femtoBlock} + {Optimization heuristics\\} + \begin{itemize} + \item Now: Simulated annealing + \item[] $\Rightarrow$ probabilistic technique for approximating the global optimum of a given function. + \item Next: maybe other heuristics + \end{itemize} + \end{femtoBlock} \end{frame} \begin{frame}{Performances} % Slide 11 @@ -220,6 +262,15 @@ Application on the MNIST problem} \begin{frame}{Conclusion and perspectives} % Slide 15 + + Many perspectives (we are just beginning) + Improvement of the code\\ + Test of many ideas : number of comities\\ + One reservoir to learn and another one to learn error and correct + them\\ + Test other large problems in simulation before in real\\ + => Try to test many configuration and to find optimal parameters + \end{frame} \begin{frame}{Thank you for your attention}